

UNIVERSITAS INDONESIA

Efek Variasi Radius Nukleon terhadap Persamaan Keadaan Bintang Neutron

Tesis Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Sains

> Suparti 1206306294

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI PASCASARJANA FISIKA KEKHUSUSAN FISIKA MURNI DAN TERAPAN DEPOK Juni 2014

UNIVERSITAS INDONESIA

Efek Variasi Radius Nukleon terhadap Persamaan Keadaan Bintang Neutron

Tesis Diajukan sebagai salah satu syarat untuk memperoleh gelar Magister Sains

> Suparti 1206306294

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM PROGRAM STUDI PASCASARJANA FISIKA KEKHUSUSAN FISIKA MURNI DAN TERAPAN DEPOK Juni 2014

HALAMAN PERSETUJUAN

Judul : Efek Variasi Radius Nukleon terhadap Persamaan Keadaan Bintang Neutron
 Nama : Suparti

NPM : 1206306294

Laporan tesis ini telah diperiksa dan disetujui.

Prof. Dr. Terry Mart Pembimbing I 30 April 2014

Dr. Anto Sulaksono Pembimbing II

Efek variasi..., Suparti, FMIPA UI, 2014.

HALAMAN PERNYATAAN ORISINALITAS

TESIS ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip maupun dirujuk telah saya nyatakan dengan benar.

Nama	: Suparti
NPM	: 1206306294
Tanda Tangan	: Hulu Bray
Tanggal	: 16 Juni 2014

Efek variasi..., Suparti, FMIPA UI, 2014.

HALAMAN PENGESAHAN

TESIS ini diajukan oleh :

Nama
NPM
Program Studi
Judul TESIS

Suparti
1206306294
S2
Efek Variasi Radius Nukleon terhadap Persamaan Keadaan Bintang Neutron

Telah berhasil dipertahankan di hadapan Dewan Penguji dan diterima sebagai bagian persyaratan yang diperlukan untuk memperoleh gelar Magister Sains M.Si pada Program Studi S2, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia.

DEWAN PENGUJI

Pembimbing I	i	Prof. Dr. Terry Mart	(Alle,
Pembimbing II	:	Dr. Anto Sulaksono	(A)
Penguji	:	Dr. Agus Salam	((furt,
Penguji	:	Dr. Imam Fachruddin	(A Mam
Penguji	•	Dr. Handhika S. Ramadhan	(Jun;

Ditetapkan di : Depok Tanggal : 16 Juni 2014

iv

Efek variasi..., Suparti, FMIPA UI, 2014.

KATA PENGANTAR

Assalamualaikum Wr. Wb

Alhamdulillahirrabbilalamiin, segala puji syukur ke Hadirat Allah SWT atas segala nikmat yang telah diberikan sehingga penulis berhasil menyelesaikan karya ini. Karya ini penulis persembahkan untuk Bapak Ibu tercinta atas segala limpahan doa dan kasih sayangnya, spesial suami tersayang yang selalu memberi semangat, dan seluruh keluarga besar atas segala nasihat dan semangatnya. Selain itu, penulis ingin mengucapkan terima kasih kepada:

- 1. Bapak Prof. Dr. Terry Mart dan Bapak Dr. Anto Sulaksono yang telah membimbing penulis dalam pengerjaan tesis. Terimakasih atas segala ilmu yang diberikan.
- Bapak Dr. Agus Salam, Bapak Dr. Handhika S. Ramadhan, dan Bapak Dr. Imam Fachruddin selaku penguji sidang tesis.
- 3. Seluruh dosen Departemen Fisika Universitas Indonesia.
- 4. Bapak Suparman yang telah memberikan bantuan dalam mengurus segala sesuatu.
- 5. Sahabat-sahabat seperjuangan fisika nuklir partikel, Sinta, Lila, Dini, Ika, Fely, Jay, Fadli.
- 6. Adik-adik lab T yang telah memberikan banyak ilmu.
- 7. Staff Kesekretariatan Departemen Fisika Universitas Indonesia.

Penulis menyadari karya tesis ini masih banyak terdapat kekurangan. Kritik dan saran sangat diharapkan demi kesempurnaan karya ini. Semoga karya ini memberi manfaat untuk kita semua. Amiin.

Wassalamualaikum Wr. Wb

Depok, Juni 2014

Suparti

Efek variasi..., Suparti, FMIPA UI, 2014.

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Indonesia, saya yang bertanda tangan di bawah ini:

Nama	:	Suparti
NPM	•	1206306294
Program Studi	•	S2
Fakultas	:	Matematika dan Ilmu Pengetahuan Alam
Jenis Karya	:	TESIS

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Indonesia **Hak Bebas Royalti Noneksklusif (Non-exclusive Royalty Free Right)** atas karya ilmiah saya yang berjudul:

Efek Variasi Radius Nukleon terhadap Persamaan Bintang Neutron

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Indonesia berhak menyimpan, mengalihmedia/formatkan, mengelola dalam bentuk pangkalan data (database), merawat, dan memublikasikan tugas akhir saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan sebagai pemilik Hak Cipta.

Demikian pernyatan ini saya buat dengan sebenarnya.

Dibuat di : Depok Pada tanggal : 16 Juni 2014

Yang menyatakan

(Suparti)

vi

Efek variasi..., Suparti, FMIPA UI, 2014.

ABSTRAK

Nama	:	Suparti
Program Studi	:	Pascasarjana Fisika Kekhususan Fisika Murni dan Terapan
Judul	:	Efek Variasi Radius Nukleon terhadap Persamaan Keadaan
		Bintang Neutron

Parameter isoskalar SNM dan parameter isovektor PNM dari berbagai nilai radius nukleon serta efek *fitting* pada prediksi daerah *medium density* dan *low density* PNM, dengan menggunakan nilai $\beta = 0.0005$ dan $\beta = 0.01$ serta radius nukleon 0, 0.66 fm, 0.76 fm, 0.83 fm, dan 0.99 fm telah berhasil diperoleh. Parameter isoskalar hasil fit menghasilkan nilai yang cocok dengan perhitungan DBHF untuk semua radius nukleon yang digunakan, kecuali untuk radius 0.99 fm yang tidak memenuhi prediksi EOS SNM, menurut hasil eksperimen tumbukan ion berat. Sementara itu, efek *fitting* untuk parameter-parameter di luar daerah *fitting window* tidak sesuai dengan jangkauan eksperimen dari Danielewicz, dkk. Hal ini kemungkinan diakibatkan oleh keterbatasan jangkauan parameter, nilai β , dan radius nukleon yang digunakan.

Kata kunci:

Radius nukleon, parameter, persamaan keadaan

ABSTRACT

Name : Suparti
Program : Fisika Murni dan Terapan
Title : Effects of the Nucleon Radius Variation on the Equation of State of Neutron Star

The isoscalar parameter of SNM and isovector parameter of PNM from various nucleon size as well as the effects of fitting on medium density and low density prediction area of PNM have been investigated. To this end, we have chosen cutoff parameter $\beta = 0.0005$ and $\beta = 0.01$, with the nucleon radius of 0, 0.66, 0.76, 0.83, and 0.99 fm. The obtained isoscalar parameters lead to a good agreement with the result of the DBHF calculation for all nucleon radii used, except for $r_N = 0.99$ fm, which does not fulfill the SNM EOS prediction based on the results of heavy ion collision. On the other hands, the effect of fitting by means of the parameters outside the upper and lower bounds does not agree with the experimental result of Danielwicz *et al.* It is suspected that this could happen due to the limitation of the parameter range, β , as well as the nucleon radius used.

Keywords:

Nucleon radius, parameter, equation of state

DAFTAR ISI

HA	ALAN	IAN JUDUL	i
LF	EMBA	AR PERSETUJUAN	ii
LF	EMBA	AR PERNYATAAN ORISINALITAS	iii
LE	EMBA	AR PENGESAHAN	iv
KA	ATA F	PENGANTAR	v
LE	EMBA	AR PERSETUJUAN PUBLIKASI ILMIAH	v
AF	BSTR	АК	vii
Da	ftar l	lsi	ix
Da	ftar (Gambar	xi
Da	ftar '	Tabel	xiii
1	PEN	IDAHULUAN	1
	1.1	Latar Belakang	1
	1.2	Perumusan Masalah	2
	1.3	Tujuan Penelitian	2
	1.4	Manfaat Penelitian	2
	1.5	Batasan Penelitian	2
	1.6	Sistematika Penulisan	3
2	TEC	ORI DASAR	4
	2.1	Medan Rata-Rata Relativistik	4
		2.1.1 Nukleon Titik	4
		2.1.2 Nukleon Berstruktur	5
		2.1.3 Parameter Set	6
	2.2	Pendekatan Dirac-Brueckner Hartree Fock (DBHF)	7

3	ME	TODOLOGI	10					
	3.1	Tujuan Operasional Penelitian	10					
	3.2	Waktu dan Tempat Penelitian	10					
	3.3	Metode Penelitian	10					
		3.3.1 Tahap Perhitungan	10					
		3.3.2 Alur Penelitian	11					
4	HAS	SIL DAN DISKUSI	12					
	4.1	Symmetric Nuclear Matter (SNM)	13					
	4.2	Pure Neutron Matter (PNM)	17					
	4.3	Neutron Star Matter (NSM)	20					
5	KES	SIMPULAN DAN SARAN	22					
	5.1	Kesimpulan	22					
	5.2	Saran	23					
Da	iftar]	Referensi	24					
LA	AMPI	RAN	1					
La	mpir	an 1 6006	2					
La	Lampiran 2 2							
La	mpir	an 3	4					
La	mpir	an 4	7					
La	mpir	an 5	24					

DAFTAR GAMBAR

3.1	Alur penelitian yang dikerjakan.	11
4.1	Hubungan <i>binding energi</i> (E/A) terhadap kerapatan (ρ) pada pen- dekatan DBHF. (a) Parameter IUFSU dengan nilai $\beta = 0.0005$. (b) <i>Fitting</i> parameter model memakai nilai $\beta = 0.0005$. (c) <i>Fitting</i> pa- rameter model memakai nilai $\beta = 0.01$. (d) Parameter IUFSU de-	
4.2	ngan nilai $\beta = 0.01$ Hubungan <i>binding energy</i> (E/A) terhadap kerapatan barion (ρ)	14
	hasil <i>fitting</i> data dan pada parameter IUFSU	15
4.3	Kesesuaian parameter set isoskalar hasil <i>fitting</i> terhadap persamaan keadaan SNM yang diekstraksi dari hasil tumbukan ion berat	
4.4	 Danielewicz [2]	16
4.5	sebagai fungsi momentum fermi untuk <i>low density</i> PNM Hubungan tekanan materi nuklir P dalam MeV fm ^{-3} terhadap ker-	19
	apatan energi ε dalam MeV fm ⁻³ menggunakan model EOS NSM dengan parameter Set 1. Set 2. Set 6. dan Set 7.	20
4.6	Hubungan fraksi proton, neutron, elektron, dan muon terhadap ker-	20
	apatan barion dalam kerapatan saturasi.	21
1 2	<i>Fitting</i> parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0$ <i>Fitting</i> parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit	8
3	1-8)	9
5	9-16). $\dots \dots \dots$	10
4	<i>Fitting</i> parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit 17-24)	11
5	<i>Fitting</i> parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit	11
(25-30)	12
6	Fitting parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.76$ fm (fit 1-8).	13

7	<i>Fitting</i> parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.76$ fm (fit	
	9-16)	14
8	<i>Fitting</i> parameter isovektor pada $\beta = 0.01$ dan $r_N = 0$	17
9	<i>Fitting</i> parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.6$ (fit 1-8)	18
10	<i>Fitting</i> parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.66$ fm (fit 9-16).	19
11	<i>Fitting</i> parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.76$ fm (fit 1-8).	20
12	<i>Fitting</i> parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.76$ fm (fit 9-16).	21
13	<i>Fitting</i> parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.83$ fm (fit 1-8.	22
14	<i>Fitting</i> parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.83$ fm (fit 9-16).	23
15	<i>Fitting</i> parameter isovektor untuk daerah <i>low density</i> pada $\beta = 0.01$	
	$\operatorname{dan} r_N = 0. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	24
16	Fitting parameter isovektor untuk daerah low density pada $\beta =$	
	$0.0005 \mathrm{dan} r_N = 0. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	25
17	<i>Fitting</i> parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit	
	1-8)	26
18	<i>Fitting</i> parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit	
	9-16)	27
19	<i>Fitting</i> parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit	
	17-24)	28
20	Fitting parameter isovektor untuk daerah low density pada $\beta =$	
	0.0005 dan $r_N = 0.66$ fm (fit 25-30)	29
21	<i>Fitting</i> parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.76$ fm (fit	
	1-8)	30
22	Fitting parameter isovektor untuk daerah low density pada $\beta =$	
	0.0005 dan $r_N = 0.76$ fm (fit 9-16)	31
23	Fitting parameter isovektor untuk daerah low density pada $\beta = 0.01$	
	dan $r_N = 0.66$ fm (fit 1-8)	32
24	Fitting parameter isovektor untuk daerah low density pada $\beta = 0.01$	
	dan $r_N = 0.66$ fm (fit 9-16)	33
25	Fitting parameter isovektor untuk daerah low density pada $\beta = 0.01$	
	dan $r_N = 0.76$ fm (fit 1-8)	34
26	Fitting parameter isovektor untuk daerah low density pada $\beta = 0.01$	
	dan $r_N = 0.76$ fm (fit 9-16)	35
27	Fitting parameter isovektor untuk daerah low density pada $\beta = 0.01$	
	dan $r_N = 0.83$ fm (fit 1-8)	36
28	Fitting parameter isovektor untuk daerah low density pada $\beta = 0.01$	
	dan $r_N = 0.83$ fm (fit 9-16)	37

Universitas Indonesia

DAFTAR TABEL

2.1	Parameter yang digunakan dalam penelitian ini	7
4.1	Parameter terbaik isoskalar hasil <i>fit</i> pada $\beta = 0.0005$ dan $\beta = 0.01$.	13
4.2	Parameter isovektor terbaik hasil <i>fitting</i> pada nilai $\beta = 0.0005$ dan $\beta = 0.01$ untuk PNM	18
5.1	Parameter terbaik hasil <i>fit</i> SNM dan PNM pada $\beta = 0.0005$ dan $\beta = 0.01$	22
2	Parameter isoskalar hasil <i>fitting</i> untuk nilai $\beta = 0.0005$ dan $r_N = 0$.	
_	0.66 fm, 0.76 fm, 0.83 fm, dan 0.99 fm.	2
3	Lanjutan parameter isoskalar hasil <i>fitting</i> untuk nilai $\beta = 0.0005$ dan	
	$r_N = 0, 0.66 \text{ fm}, 0.76 \text{ fm}, 0.83 \text{ fm}, \text{dan } 0.99 \text{ fm}.$	3
4	Parameter isoskalar hasil <i>fitting</i> untuk nilai $\beta = 0.01$ dan $r_N = 0$,	
	0.66 fm, 0.76 fm, 0.83 fm, dan 0.99 fm.	4
5	Lanjutan parameter isoskalar hasil <i>fitting</i> untuk nilai $\beta = 0.01$ dan	
	$r_N = 0, 0.66 \text{ fm}, 0.76 \text{ fm}, 0.83 \text{ fm}, \text{dan } 0.99 \text{ fm}.$	5
6	Parameter isovektor hasil <i>fitting</i> untuk nilai $\beta = 0.0005$ dan $r_N = 0$,	
	0.66 fm, 0.76 fm, 0.83 fm, 0.99 fm.	6
7	Lanjutan parameter isovektor hasil <i>fitting</i> untuk nilai $\beta = 0.0005$	
	dan $r_N = 0, 0.66 \text{ fm}, 0.76 \text{ fm}, 0.83 \text{ fm}, 0.99 \text{ fm}$.	7
8	Parameter terbaik isovektor hasil <i>fitting</i> untuk nilai $\beta = 0.01$ dan r_N	
	= 0, 0.66 fm, 0.76 fm, 0.83 fm, 0.99 fm.	15

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Ide teori dari bintang neutron yang pertama datang dari Baade dan Zwicky pada tahun 1934. Mereka mengemukakan pendapat bahwa bintang neutron terbentuk dari sisa ledakan supernova, di mana sebagian besar energinya dilepaskan oleh bintang dan intinya kolaps [7,10]. Hasil akhir dari kolapsnya bintang tersebut di akhir hidupnya bergantung pada massa bintang semula. Bintang dengan massa inti lebih kecil dari massa Chandrasekhar, yaitu 1,4 M \odot akan menjadi katai putih (*white dwarf*). Bintang dengan massa inti akhir lebih besar dari massa Chandrasekhar (\geq 1,4 M \odot) akan menjadi bintang neutron [6].

Keadaan materi bintang neutron dengan kerapatan yang sangat tinggi akibat gaya gravitasi dapat dijelaskan dengan menggunakan teori relativitas umum [1]. Banyak model teori yang dikembangkan untuk menjelaskan materi nuklir bintang neutron. Salah satu model yang cukup baik mengakomodasi efek relativistik adalah model relativistik dengan pendekatan medan rata-rata (*relativistic mean field*/RMF). Model ini digunakan jika diasumsikan bahwa bintang neutron tersusun dari nukleon dan lepton, sehingga persamaan keadaan bintang neutron bagian dalam dapat ditentukan [1].

Penelitian yang dilakukan untuk menjelaskan persamaan keadaan bintang neutron menjadi topik yang masih menarik untuk dipelajari sampai saat ini. Untuk itu, kami mempelajari bagaimana persamaan keadaan bintang neutron pada berbagai variasi radius nukleon. Dalam model relativistik diperlukan konstanta-konstanta kopling untuk menentukan kekuatan interaksi antarpartikel yang ada di dalam materi. Oleh karena itu, dibutuhkan suatu parameter untuk menggambarkan sifat materi nuklir bintang neutron. Parameter konstanta kopling diperoleh dari *fitting* model terhadap data eksperimen. Beberapa parameter set telah dikenalkan, diantaranya paramater set IUFSU, IUFSU*, NL3, FSUGold, dan lain-lain [8]. Untuk model RMF kami menggunakan parameter set awal yang diperoleh dari IUFSU dan IUFSU* [3,9]. Dalam penelitian ini kami mendapatkan parameter dengan memfitting model parameter dengan hasil perhitungan DBHF [11]. Hasil parameter terbaik diindikasikan dengan nilai χ^2 , yang mana menunjukkan perbandingan model dengan hasil perhitungan paling minimum.

1.2 Perumusan Masalah

Permasalahan yang muncul pada penelitian ini, dirumuskan sebagai berikut:

- 1. Apakah *fitting* parameter model dengan variasi radius nukleon mampu mereproduksi hasil perhitungan DBHF.
- 2. Bagaimana efek *fitting* pada prediksi persamaan keadaan kerapatan tinggi dan rendah.

1.3 Tujuan Penelitian

Tujuan penelitian ini, antara lain sebagai berikut:

- 1. Memperoleh parameter terbaik dari variasi radius nukleon, kemudian membandingkan dengan hasil perhitungan DBHF untuk EOS SNM.
- 2. Memeriksa efek *fitting* pada prediksi kerapatan tinggi dan rendah untuk EOS SNM dan EOS PNM dan menguji kesesuaian persamaan keadaan SNM dan PNM yang diekstraksi dari tumbukan ion berat.

1.4 Manfaat Penelitian

Manfaat penelitian ini adalah mendapatkan parameter terbaik sehingga dapat digunakan sebagai dasar dan pengembangan penelitian selanjutnya.

1.5 Batasan Penelitian

Beberapa batasan pada penelitian ini, sehingga penelitian yang dilakukan sesuai dengan tujuan.

- 1. Variasi radius nukleon yang digunakan yaitu 0, 0.66 fm, 0.76 fm, 0.83 fm, dan 0.99 fm dengan memakai nilai $\beta = 0.0005$ dan $\beta = 0.01$.
- 2. *Fitting* parameter isoskalar (EOS SNM) dibatasi pada 5 konstanta kopling, yaitu g_{σ} , g_{ω} , b_2 , b_3 , dan c_1 , sedangkan pada parameter isovektor (EOS PNM) dibatasi pada 2 konstanta kopling, yaitu (g_{ρ} , g_4).

1.6 Sistematika Penulisan

Sistematika penulisan dari tesis ini terdiri atas lima bab dan lima lampiran. Bab 1 Pendahuluan, berisi tentang Latar Belakang, Perumusan Masalah, Tujuan Penelitian, Manfaat Penelitian, Batasan Penelitian, dan Sistematika Penulisan. Bab 2 Teori Dasar, menjelaskan Pendekatan Medan Rata-rata Relativistik (Neutron Titik, Neutron Berbentuk, dan Parameter Set), serta Pendekatan DBHF. Bab 3 Metodologi, berisi Tujuan Operasional Penelitian, Waktu dan Tempat Penelitian, serta Metode Penelitian (Tahap Perhitungan dan Alur Penelitian). Bab 4 Hasil dan Diskusi, membahas hasil-hasil penelitian dalam tesis ini, yaitu tentang *Symmetric Nuclear Matter*, *Pure Neutron Matter*, dan *Neutron Star Matter*. Bab 5 Kesimpulan dan Saran, berisi tentang kesimpulan dari tesis ini serta saran untuk penelitian selanjutnya. Daftar Referensi yang digunakan dalam penelitian dipaparkan setelah Bab 5. Lampiran, berisi Tabel Parameter dan Gambar *Fitting* Parameter.

BAB 2

TEORI DASAR

2.1 Medan Rata-Rata Relativistik

2.1.1 Nukleon Titik

Untuk mempermudah perhitungan dilakukan suatu metode pendekatan. Pendekatan medan rata-rata (RMF) merupakan salah satu pendekatan non pertubatif yang dapat dilakukan dan merupakan metode yang digunakan dalam penulisan ini. Titik awal dari model RMF adalah kerapatan Lagrangian, dan dituliskan sebagai berikut:

$$\mathcal{L} = \bar{\Psi} \bigg[\gamma^{\mu} (i\partial_{\mu} - g_{\nu}V_{\mu}) - \frac{g_{\rho}}{2} \tau_{3}b_{0} - (M - g_{s}\phi_{0}) \bigg] \Psi - \frac{1}{2}m_{s}^{2}\phi_{0}^{2} - \frac{\kappa}{3!}(g_{s}\phi_{0})^{3} - \frac{\lambda}{4!}(g_{s}\phi_{0})^{4} + \frac{1}{2}m_{\omega}^{2}V_{0}^{2} + \frac{\zeta}{4!}(g_{\nu}V_{0})^{4} - \frac{1}{2}m_{\rho}^{2}b_{0}^{2} + \Lambda_{\nu}(g_{\nu}V_{0})^{2}(g_{\rho}b_{0})^{2}$$
(2.1)

Dari kerapatan lagrangian tersebut di atas dapat dikonstruksi kerapatan Hamiltonian, kemudian dicari nilai energinya. Nilai kerapatan energi diperoleh:

$$\begin{aligned} \varepsilon &= \left[\frac{1}{2} m_s^2 \phi_0^2 + \frac{\kappa}{3!} (g_s \phi_0)^3 + \frac{\lambda}{4!} (g_s \phi_0)^4 - \frac{1}{2} m_0^2 V_0^2 - \frac{\zeta}{4!} (g_v V_0)^4 \\ &- \frac{1}{2} m_\rho^2 b_0^2 - \Lambda_v (g_v V_0)^2 (g_\rho b_0)^2 \right] + g_v V_0 (\rho_p + \rho_n) + \frac{1}{2} g_\rho b_0 (\rho_p - \rho_n) \\ &+ \underbrace{\frac{1}{\pi^2} \int_0^{k_p} dk k^2 \sqrt{k^2 + m^{*2}}}_{\varepsilon_p} + \underbrace{\frac{1}{\pi^2} \int_0^{k_n} dk k^2 \sqrt{k^2 + m^{*2}}}_{\varepsilon_n} \end{aligned}$$
(2.2)

Persamaan 2.2 dapat ditulis sebagai berikut

$$\varepsilon = (\varepsilon_p^k + \varepsilon_n^k) + \varepsilon_M + g_\omega \omega_0(\rho_p + \rho_n) + \frac{1}{2}g_\rho b_0(\rho_\rho - \rho_n)$$
(2.3)

dengan asumsi bahwa nukleon bentuk titik.

2.1.2 Nukleon Berstruktur

Menurut model RMF, rapat energi dari materi yang terdiri dari nukleon dan lepton dengan asumsi nukleon mempunyai struktur dengan radius r_N , diberikan oleh persamaan berikut [9,13,14].

$$\varepsilon = A(\varepsilon_p^k + \varepsilon_n^k) + \varepsilon_e^k + \varepsilon_\mu^k + \varepsilon_M(\omega, \rho, \sigma, \delta) + g_\omega \omega_0(\rho_p + \rho_n) + \frac{1}{2}g_\rho b_0(\rho_\rho - \rho_n)$$
(2.4)

di mana g_{ω} , g_{σ} , g_{ρ} masing-masing adalah kopling meson ω , σ , ρ dan ε_M adalah rapat energi total meson. Sedangkan σ , ω_0 , dan b_0 masing-masing merupakan medan σ , ω , dan ρ . Selanjutnya pada persamaan 2.4

$$\varepsilon_i^k = \frac{2}{(2\pi)^3} \int d^3 \overrightarrow{k} (k^2 + m_i^{*2})^{1/2} \Theta(k - k_F) \to i = p, n, e, \mu$$
(2.5)

di mana massa efektif lepton adalah $m_i^* = m_i$ dan massa efektif nukleon adalah $m_i^* = m_i - g_{\sigma}\sigma$

Rapat nukleon dan skalar diberikan oleh persamaan

$$\rho_i = A\bar{\rho}_i \tag{2.6}$$

$$\rho_s, i = A\bar{\rho}_s, i \tag{2.7}$$

di mana ρ_i rapat nukleon ke-*i* dan ρ_s , *i* rapat skalar ke-*i*, dengan asumsi bahwa nukleon partikel titik. Konstanta normalisasi A diberikan oleh:

$$A = \frac{1}{1 + V_p \bar{\rho_p} + V_n \bar{\rho_n}} \tag{2.8}$$

dengan V_p volume proton, dan V_n volume neutron. Untuk menyederhanakan perhitungan kita asumsikan bahwa

$$V_p = V_n \equiv V_N = \frac{4}{3}\pi r_N^3 \tag{2.9}$$

di mana V_N dan r_N masing-masing volume dan radius nukleon.

Dari persamaan 2.4 kita dapat menurunkan tekanan materi,

$$P = \rho^2 \frac{d\varepsilon}{d\rho} \tag{2.10}$$

Universitas Indonesia

dengan $\varepsilon = \varepsilon/\rho$. Selanjutnya potensial kimia untuk nukleon ke-i diperoleh dari

$$\mu_{i} = E_{Fi}^{*} + V_{i}P_{i}' + g_{\omega}\omega_{0} + \alpha_{i}\frac{1}{2}g_{\rho}b_{0}$$
(2.11)

di mana α_i (+1) untuk proton dan (-1) untuk neutron.

$$E_{F,i}^* = (k_{F,i}^2 + m_i^{*2})^{1/2}$$

dan

$$P'_{i} = \frac{1}{12\pi^{2}} \left[E^{*}_{F,i} \left(k_{F,i} \left(E^{*2}_{F,i} - \frac{5}{2} m^{*2}_{i} \right) + \frac{3}{2} m^{*4}_{i} \log \left(\frac{k_{F,i} + E^{*}_{F,i}}{m^{*}_{i}} \right) \right]$$
(2.12)

Berbeda dengan model QMC [15,16], di mana kebergantungan dari r_N pada kerapatan materi dapat dihitung secara langsung dari model, pada pendekatan RMF kebergantungan tidak dapat diprediksi dengan mudah. Oleh karena itu, di sini kita memilih bentuk *phenomenological* untuk radius nukleon, yang mana dituliskan sebagai berikut

$$r_N(\rho) = r_N(0) \left\{ 1 + \beta (\frac{\rho}{\rho_0})^2 \right\}^{-2}$$
(2.13)

di mana $\rho = \rho_p + \rho_n$, ρ_0 adalah nilai ρ pada titik saturasi, dan $r_N(0)$ adalah radius proton pada vakum (kerapatan nol).

2.1.3 Parameter Set

Salah satu cara menggambarkan sifat materi nuklir yaitu menggunakan metode pendekatan model RMF. Model ini memerlukan konstanta untuk menentukan interaksi antarmedan meson yang disebut konstanta kopling. Parameter set awal dalam penelitian ini menggunakan parameter set IU-FSU untuk kasus EOS SNM dan parameter IU-FSU* untuk kasus EOS PNM [9].

Parameter	IUFSU	IUFSU*
m _B	939	939
m _σ	491.500	491.500
m_{ω}	782.500	782.500
mδ	980	980
m _ρ	763.0	763.0
g_{σ}	9.9712888	9.9712888
Sω	13.032072	13.032072
<i>8</i> 8	0.0	0.0
<i>8</i> p	13.589985	12.420
ĸ ₂	-1.306594	-1.306594
κ ₃	0.107418	0.107418
η_2	0.0	0.0
η_3	0.0	0.0
$\eta_{ ho_3}$	0.0	0.0
$\eta_{ ho_4}$	51.468870	51.468870
ζ_0	5.095047	5.095047
b_2	-1675.88174	-1675.88174
<i>b</i> ₃	0.48769201	0.48769201
<i>c</i> ₁	144.219467	144.219467
d_2	0.0	0.0
<i>d</i> ₃	0.0	0.0
f_2	0.0	0.0
84	2885.71026	41.3066

 Tabel 2.1: Parameter yang digunakan dalam penelitian ini.

Pada penelitian ini kami mem*fitting* parameter isoskalar g_{σ} , g_{ω} , b_2 , b_3 , c_1 dan parameter isovektor g_{ρ} dan g_4 .

2.2 Pendekatan Dirac-Brueckner Hartree Fock (DBHF)

Pada pendekatan relativistik Brueckner, nukleon di dalam materi nuklir dipandang sebagai partikel terselubung akibat dari interaksi dua benda dengan nukleonnukleon sekitar. Permasalahan ini dinyatakan dalam 3 pasangan set persamaan integral nonlinear sebagai berikut

$$T = V + i \int V QGGT \tag{2.14}$$

$$G = G_0 + G_0 \Sigma G \tag{2.15}$$

$$\Sigma = -i \int_{F} (Tr[GT] - GT)$$
(2.16)

Persamaan 2.14 menunjukkan T-matriks yang dihitung dalam pendekatan persamaan Bethe-Salpeter (BS) dan V adalah interaksi nukleon-nukleon yang dijelaskan oleh potensial pertukaran boson tunggal. *iGG* menunjukkan propagator dan Q adalah operator Pauli. Fungsi Green G pada persamaan 2.15 dihitung melalui persamaan Dyson. G_0 menunjukkan propagator nukleon bebas, sedangkan Σ adalah energi diri dari nukleon-nukleon sekitar. Pada persamaan Brueckner, energi diri ini dinyatakan sebagai jumlah interaksi dengan semua nukleon di dalam *Fermi sea* pada pendekatan Hartree Fock (lihat persamaan 2.16).

Secara umum, struktur Lorentz dari energi diri pada nuklir matter dalam kerangka diam dinyatakan sebagai berikut

$$\Sigma(k,k_F) = \Sigma_s(k,k_F) - \gamma_0 \Sigma_0(k,k_F) + \gamma_0 \mathbf{k} \Sigma_v(k,k_F)$$
(2.17)

komponen Σ_s , Σ_0 , Σ_v merupakan fungsi skalar Lorentz yang bergantung pada invarian Lorenz k_o , $|\mathbf{k}|$, dan k_F , di mana k_F menunjukkan momentum Fermi. Komponen energi diri masing-masing sebagai berikut

$$\Sigma_{s} = \frac{1}{4} tr[\Sigma]$$

$$\Sigma_{0} = \frac{-1}{4} tr[\gamma_{0}$$

$$\Sigma_{v} = \frac{-1}{4|\mathbf{k}|^{2}} tr[\gamma.\mathbf{k}\Sigma]$$
(2.18)

Persamaan Dirac pada medium basis spinor dapat disimpulkan dari fungsi Green, dengan massa efektif dan momentum efektif dari nukleon

$$m^{*}(k,k_{F}) = M + \Re \Sigma_{s}(k,k_{F}), k^{*\mu} = k^{\mu} + \Re \Sigma^{\mu}(k,k_{F})$$
(2.19)

Universitas Indonesia

Persamaan Dirac pada suku ini dapat ditulis dalam bentuk

$$[\gamma_{\mu}k^{*\mu} - m^{*}(k,k_{F})]u(k,k_{F}) = 0$$
(2.20)

Pada pendekatan relativistik Brueckner, fungsi Green G diganti oleh bagian energi positifnya. Oleh karena itu, propagator nukleon pada persamaan 2.16 dapat diganti dengan propagator Dirac [12,17].

$$G_D(k,k_F) = [\gamma_\mu k^{*\mu} - m^*(k,k_F)] 2\pi i \delta(k^{*2} - m^{*2}(k,k_F)) \Theta(k^{*0}) \Theta(k_F - |\mathbf{k}|) \quad (2.21)$$

k menunjukkan momentum dari nukleon di dalam *Fermi sea* pada materi nuklir dalam kerangka diam. Massa efektif dan momentum efektif dituliskan

$$\tilde{k}_{u}^{*} = \frac{k_{u}^{*}}{1 + \Sigma_{v}(k, k_{F}))}$$

$$\tilde{m}^{*}(k, k_{F}) = \frac{m^{*}(k, k_{F})}{1 + \Sigma_{v}(k, k_{F}))}$$
(2.22)

persamaan Dirac pada kerangka diam dapat ditulis ulang sebagai berikut

$$\gamma_{\mu}\tilde{k}^{*\mu} - \tilde{m}^{*}(k,k_{F})]u(k,k_{F}) = 0$$
(2.23)

 $|\mathbf{k}| = k_F$, asumsikan $\Sigma(k) \approx \Sigma(|\mathbf{k}| = k_F)$. Solusi persamaan Dirac pada medium spinor nukleon

$$u_{\lambda}(k,k_F) = \sqrt{\frac{\tilde{E}^*(\mathbf{k}) + \tilde{m}_F^*}{2\tilde{m}_F^*}} \begin{pmatrix} 1\\ \frac{2\lambda|\mathbf{k}|}{E^*(\mathbf{k}) + \tilde{m}_F^*} \end{pmatrix} X\lambda$$
(2.24)

di mana $\tilde{E}^*(\mathbf{k}) = \sqrt{k^2 + \tilde{m}_F^{*2}}$. $X\lambda$ menunjukkan komponen-dua spinor Pauli dengan $\lambda = \pm \frac{1}{2}$. Normalisasi spinor Dirac $\bar{u}_{\lambda}(k, k_F)u_{\lambda}(k, k_F) = 1$.

Pada penelitian ini, kita tidak melakukan perhitungan lebih detail tentang pendekatan DBHF, karena kita hanya mereduksi dari hasil perhitungan DBHF yang telah tersedia. Penjelasan lebih mendalam mengenai pendekatan DBHF dapat dilihat pada Ref. [12, 17, 18, 19].

9

BAB 3

METODOLOGI

3.1 Tujuan Operasional Penelitian

Tujuan operasional dari penelitian ini adalah untuk memperoleh parameter terbaik dari berbagai ukuran nukleon yang direpresentasikan dengan nilai χ^2 paling minimum dan memeriksa prediksinya di luar daerah *fitting window*nya.

3.2 Waktu dan Tempat Penelitian

Penelitian ini dikerjakan selama 7 bulan dimulai dari September 2013 sampai dengan April 2014 di dalam lingkungan Laboratorium Teori Departemen Fisika Universitas Indonesia.

3.3 Metode Penelitian

3.3.1 Tahap Perhitungan

Semua persoalan numerik dalam penelitian ini diselesaikan dengan menggunakan bahasa pemrograman *Fortran*. Kemudian data-data hasil penelitian dalam bentuk grafik diplot dengan menggunakan aplikasi pendukung berupa *Gnuplot*. Beberapa tahap pengerjaan dalam penelitian ini, antara lain adalah sebagai berikut:

- 1. Menerjemahkan persamaan keadaan (EOS) untuk kasus *symmetric nuclear matter* (SNM), EOS untuk kasus *pure neutron matter* (PNM), dan EOS untuk kasus *neutron star matter* (NSM) yang diprediksi oleh model yang digunakan ke dalam bahasa numerik untuk program *Fortran*.
- 2. Mengkompilasi data hasil perhitungan berdasarkan pendekatan *Dirac Brueckner Hartree Fock* (DBHF). Data ini akan digunakan untuk mem*fitting* parameter dari data yang digunakan.
- 3. *Fiting* parameter model dengan hasil perhitungan DBHF dengan menggunakan program *minuit*. Hasil terbaik ditandai dengan nilai χ^2 yang paling minimum.

- 4. Memplot hasil yang diperoleh dari *fitting* data dengan menggunakan *Gnuplot* kemudian membandingkan hasilnya dengan penelitian yang sudah ada.
- 5. Tahap 3 dan 4 adalah proses yang dikerjakan untuk menghitung parameter isoskalar SNM, yaitu meliputi g_{σ} , g_{ω} , b_2 , b_3 , dan c_1 dengan parameter set awal IUFSU.
- 6. Hasil terbaik yang diperoleh pada tahap 3 dan 4, selanjutnya digunakan untuk menghitung parameter isovektor PNM (g_{ρ} , g_4), yaitu dengan cara parameter yang sudah diperoleh pada tahap 3, 4, 5 dibuat tetap pada EOS PNM.
- 7. Menggunakan parameter isoskalar dan isovektor yang diperoleh untuk menghitung EOS NSM (hubungan tekanan dengan energi densitas).
- 8. Membandingkan hubungan fraksi barion dan lepton terhadap rasio kerapatan terhadap kerapatan saturasi.

3.3.2 Alur Penelitian

Tahap-tahap penelitian di atas digambarkan dalam Gambar 3.1 sebagai berikut.

Gambar 3.1: Alur penelitian yang dikerjakan.

Universitas Indonesia

BAB 4

HASIL DAN DISKUSI

Penelitian ini diawali dengan menerjemahkan persamaan keadaan materi nuklir berdasarkan model yang digunakan, yaitu model *relativistic mean field* (RMF) dengan asumsi neutron bukan partikel titik ke dalam bahasa pemrograman *Fortran*. Isi program meliputi persamaan keadaan *symmetric nuclear matter* (SNM), EOS *pure neutron matter* (PNM), dan EOS *neutron star matter* (NSM). Input yang digunakan sebagai media *fitting* berupa data dari perhitungan berdasarkan pendekatan *Dirac-Brueckner-Hartree-Fock* (DBHF). Data diambil dengan menggunakan software *G3Data Graph Analyzer*. Data yang digunakan sebagai input dalam program berupa *binding energy* sebagai fungsi kerapatan (*density*) pada pendekatan DBHF, baik untuk kasus SNM ataupun PNM.

Pada penelitian ini digunakan program *minuit* sebagai program tambahan untuk melakukan *fit* terhadap data. Program *minuit* ini dijalankan sampai iterasi tertentu sehingga didapatkan perbandingan data eksperimen dengan hasil perhitungan berupa χ^2 yang semakin kecil. Jika χ^2 semakin kecil menunjukkan bahwa model yang digunakan semakin sesuai dengan data yang digunakan sebagai media *fitting*. Sebagai iterasi awal yang digunakan adalah parameter yang diadopsi dari parameter IUFSU untuk SNM dan IUFSU* untuk PNM.

Perpaduan *Fortran* dan *minuit* akan menghasilkan parameter terbaik yang ditandai dengan nilai χ^2 paling minimum dari sejumlah iterasi tertentu. Diawali dari menentukan parameter isoskalar untuk SNM dan selanjutnya parameter yang didapat dari SNM dibuat tetap untuk mendapatkan parameter isovektor PNM.

Bagian yang dipelajari dalam penelitian ini dibatasi pada persamaan keadaan dari materi bintang neutron, yaitu hubungan antara tekanan materi bintang neutron di dalam bintang neutron terhadap kerapatan jumlah nukleon untuk persamaan keadaan SNM, PNM, dan *neutron star matter* (NSM). EOS dari SNM didapat dengan mengasumsikan bahwa bintang neutron dianggap tersusun dari neutron dan proton dalam jumlah yang sama yang saling berinteraksi. Jika EOS yang digunakan adalah EOS dari PNM, ini artinya bintang neutron dianggap tersusun dari 100% neutron yang saling berinteraksi. Sedangkan jika EOSnya dipilih EOS dari NSM, artinya bintang neutron tersusun dari neutron, proton, muon, dan elektron yang saling berinteraksi yang komposisinya ditentukan berdasarkan kondisi kesetimbangan β dan netralitas.

4.1 Symmetric Nuclear Matter (SNM)

Fit parameter isoskalar untuk SNM meliputi g_{σ} , g_{ω} , b_2 , b_3 , dan c_1 . Parameter dikerjakan dengan memakai nilai $\beta = 0.0005$ dan $\beta = 0.01$. Variasi radiasi nukleon yang digunakan yaitu $r_N = 0$, 0.66 fm, 0.76 fm, 0.83 fm, 0.99 fm untuk masingmasing β . Dalam perhitungan ini kita menggunakan parameter set IUFSU sebagai inisial awal untuk mendapatkan parameter isoskalar. Hasil iterasi dari fit dengan parameter IUFSU sampai dengan mendapatkan parameter terbaik ditunjukkan pada Tabel 2 Lampiran 1 dan Tabel 4 pada Lampiran 2.

Berdasarkan Tabel 2 Lampiran 1 dapat dilihat bahwa χ^2 paling minimum pada radius 0, 0.66 fm, dan 0.76 fm masing-masing sebesar 0.8, 0.5, dan 1. Berbeda dengan radius 0.8 fm dan 0.99 fm yang masing-masing menghasilkan χ^2 sebesar 24 dan 166.2. Pada radius ini tidak bisa melakukan iterasi lebih lanjut karena hasilnya tidak konvergen, sehingga tidak dapat diperoleh χ^2 sampai nilai minimum. Penelitian selanjutnya, parameter konstanta kopling yang digunakan hanya pada radius 0, 0.66 fm, dan 0.76 fm untuk nilai $\beta = 0.0005$.

Hasil parameter isoskalar pada $\beta = 0.01$ seperti ditunjukkan pada Tabel 4 Lampiran 2 menunjukkan hasil yang baik dengan χ^2 di bawah 1.0 untuk semua variasi r_N . Tabel 4.1 menunjukkan parameter isoskalar terbaik pada $\beta = 0.0005$ dan $\beta = 0.01$. Untuk memudahkan dalam penelitian selanjutnya, parameter yang diperoleh dari SNM (atas ke bawah) masing-masing diberi nama parameter set Set*, Set 1, Set 2, Set 5, Set 6, Set 7, Set 8, dan Set 9. Hasil parameter Set* dan Set 1 menunjukkan hasil yang sama, karena berdasarkan persamaan (2.13) untuk nilai β yang berbeda tidak akan berpengaruh pada nilai parameter, jika $r_N = 0$.

β	r_N	gσ	gω	<i>b</i> ₂	<i>b</i> ₃	<i>c</i> ₁	χ^2	Keterangan
	0	11.950	15.512	-4343.9	-24.998	400.00	0.8	Set*
0.0005	0.66	11.953	14.633	-9108.6	-17.5	1475.2	0.5	Set 1
	0.76	9.7676	11.515	-6116.4	-90	286.22	1	Set 2
	0	11.949	15.512	-4342.6	-24.972	400.02	0.8	Set 5
	0.66	11.166	14.248	-4193.1	-48.045	257.76	1	Set 6
0.01	0.76	11.262	14.399	-4188.2	-53.174	270.94	0.9	Set 7
	0.83	11.687	15.01	-4517.2	-60	347.65	0.9	Set 8
	0.99	3.263	17.33	-5882.5	-80.242	784.03	0.9	Set 9

Tabel 4.1: Parameter terbaik isoskalar hasil *fit* pada $\beta = 0.0005$ dan $\beta = 0.01$.

Gambar 4.1: Hubungan *binding energi* (E/A) terhadap kerapatan (ρ) pada pendekatan DBHF. (a) Parameter IUFSU dengan nilai $\beta = 0.0005$. (b) *Fitting* parameter model memakai nilai $\beta = 0.0005$. (c) *Fitting* parameter model memakai nilai $\beta = 0.01$. (d) Parameter IUFSU dengan nilai $\beta = 0.01$.

Gambar 4.1 menunjukkan perbandingan antara data hasil perhitungan DBHF dengan hasil *fitting*. Data hasil perhitungan DBHF diindikasikan dengan garis merah penuh. Garis putus-putus hijau, biru, dan pink menunjukkan hasil *fitting*. Gambar (a) dan (d) adalah kurva dengan menggunakan parameter IUFSU pada nilai $\beta = 0.0005$ dan $\beta = 0.01$. Sedangkan gambar (b) dan (c) adalah kurva hasil

Universitas Indonesia

perhitungan dengan parameter hasil *fitting*, masing-masing untuk nilai $\beta = 0.0005$ dan $\beta = 0.01$. Berdasarkan Gambar 4.1, dapat diketahui bahwa model yang digunakan mampu menunjukkan kesesuaian dengan data hasil perhitungan DBHF yang diindikasikan dengan garis putus-putus berimpit dengan garis merah penuh.

Gambar 4.2: Hubungan *binding energy* (E/A) terhadap kerapatan barion (ρ) dalam kerapatan saturasi (ρ_0) pada pendekatan DBHF berdasarkan hasil *fitting* data dan pada parameter IUFSU.

Gambar 4.3: Kesesuaian parameter set isoskalar hasil *fitting* terhadap persamaan keadaan SNM yang diekstraksi dari hasil tumbukan ion berat Danielewicz [2].

Perbandingan antara parameter IUFSU dengan parameter isoskalar hasil *fitting* pada hubungan *binding energy* E/A dalam MeV fm⁻³ terhadap kerapatan jumlah barion ρ yang dinyatakan dalam kerapatan saturasi ρ_0 ditunjukkan oleh Gambar 4.2. Kerapatan saturasi ρ_0 yang digunakan dalam penelitian ini sebesar 0.153 fm⁻³ [1]. Kurva ini merupakan ekstrapolasi dari hasil pada Gambar 4.1, yaitu untuk mengetahui sejauh mana efek *fitting* pada prediksi daerah kerapatan tinggi. Gambar 4.2 (b) dan (d) menunjukkan ekstrapolasi dari hasil Gambar 4.1 dengan menggunakan parameter IUFSU dengan nilai β masing-masing 0.0005 dan 0.01. Gambar 4.2 (a) dan (c) menunjukkan ekstrapolasi dari hasil Gambar 4.1 dengan menggunakan fit*ting* parameter model hasil perhitungan DBHF. Pada nilai $\beta = 0.0005$ dengan variasi $r_N = 0$, 0.66 fm, dan 0.76 fm mendapatkan hasil yang sesuai. Namun, hasil yang kurang akurat ditunjukkan pada gambar (c) pada kurva dengan nilai $\beta = 0.01$ dan radiasi nukleon 0.99 fm, di mana pada rasio kerapatan terhadap kerapatan saturasi $(\rho/\rho_0) > 6$ kurva tidak lagi berimpit dengan hasil perhitungan DBHF. Dari kurva tersebut dapat dilihat bahwa efek *fitting* pada prediksi kerapatan tinggi dapat diterima dengan baik. Kesimpulannya bahwa parameter set yang diperoleh dapat digunakan sebagai referensi dalam penelitian selanjutnya.

Parameter yang diperoleh seperti ditunjukkan pada Tabel **??** tidak dapat diterima begitu saja, namun dilakukan uji kesesuaian dengan persamaan keadaan SNM yang diekstraksi dari tumbukan ion berat oleh Danielewicz [2]. Perbandingan parameter hasil *fitting* terhadap prediksi SNM EOS berdasarkan hasil tumbukan ion berat Daniel ditunjukkan pada Gambar 4.3. Kurva ini menunjukkan bahwa parameter Set 9 tidak memenuhi jangkauan dari data ini. Artinya parameter ini tidak dapat mereproduksi data perhitungan dengan sempurna.

4.2 Pure Neutron Matter (PNM)

Pada subab ini akan dibahas bagaimana hasil *fitting* parameter isovektor g_{ρ} dan g_4 PNM pada *medium density* dan *low density*. *Fitting* parameter ini didasarkan pada parameter isoskalar yang sudah diperoleh pada SNM. Inisial awal yang digunakan pada penelitian ini adalah parameter set IUFSU*. Prosedur sama dilakukan seperti menghitung parameter set isoskalar, hanya saja pada perhitungan parameter ini, nilai parameter set isoskalar yang dibuat tetap. Hasil setiap iterasi sampai mendapatkan χ^2 paling minimal dapat dilihat pada Tabel 6 Lampiran 3 dan Tabel 8 Lampiran 4. Berdasarkan Tabel 6, dapat dilihat bahwa χ^2 nilainya masih terlalu besar. Akibatnya, banyak hasil yang didapat tidak lolos daerah EOS dari PNM yang diijinkan berdasarkan hasil eksperimen tumbukan ion berat [2]. Untuk menyingkat penulisan, daerah EOS dari PNM yang diijinkan berdasarkan hasil eksperimen tumbukan ion berat kita namakan "standar".

Tahap-tahap iterasi dalam mendapatkan parameter isovektor medium density untuk nilai $\beta = 0.0005$ dan $r_N = 0$, 0.66 fm, 0.76 fm ditunjukkan pada Lampiran 3 Gambar 1, Gambar 2, Gambar 3, Gambar 4, Gambar 5, Gambar 6, Gambar 7. Sedangkan tahap-tahap iterasi untuk nilai $\beta = 0.01$ pada variasi $r_N = 0, 0.66$ fm, 0.76 fm, 0.83 fm ditunjukkan pada Lampiran 4 Gambar 8, Gambar 9, Gambar 10, Gambar 11, Gambar 12, Gambar 13, dan Gambar 14. Setiap iterasi digambarkan dalam plot bertujuan supaya kita dapat melihat pada *fit* ke berapa paramater telah menunjukkan hasil yang sesuai standar, hal ini karena pada nilai χ^2 paling minimum tidak menjamin hasil yang realistis (sesuai dengan standar). Ketidaksesuaian hasil ditunjukkan pada kurva yang turun ke bawah. Gambar 1 dan Gambar 8 yaitu pada radius nukleon 0 dan β masing-masing 0.0005 dan 0.1 menunjukkan bahwa setiap iterasi hasil *fitting* sesuai dengan standar. Gambar 2, Gambar 3, Gambar 4, dan Gambar 5 pada fit ke-1 sampai dengan fit ke-27 telah memenuhi standar, namun mulai fit ke-28 sampai ke-30 hasil *fitting* sudah tidak lagi konvergen, sehingga yang dianggap parameter terbaik adalah *fit* ke-27 dengan $\chi^2 = 17.5$. Gambar 6 dan Gambar 7 parameter terbaik pada *fit* ke-13 dengan $\chi^2 = 318.3$. Gambar 10 hasil terbaik ditunjukkan pada *fit* ke-10 dengan $\chi^2 = 48.2$, Gambar 12 hasil terbaik pada *fit* ke-9 dengn $\chi^2 = 70.7$, sedangkan pada Gambar 14 hasil parameter terbaik pada fit ke-10 dengan $\chi^2 = 114.5$. Jika kita asumsikan bahwa minimal χ^2 sebesar 100,

maka dari sekian jumlah iterasi yang terbaik hanya pada nilai $\beta = 0.0005 r_N = 0$ dan $r_N = 0.66$ fm, serta pada nilai $\beta = 0.01 r_N = 0.66$ fm dan $r_N = 0.76$ fm. Beberapa indikasi yang menyebabkan ketidaksesuaian hasil *fitting* dengan standar, antara lain keterbatasan *fitting* parameter, sebagaimana diketahui pada penelitian ini *fitting* parameter isovektor hanya 2 konstanta kopling. Selain itu, nilai β dan radius nukleon yang terbatasi menjadi salah satu faktor ketidaksesuaian dengan standar. Artinya, parameter isovektor terkorelasi kuat terhadap β dan r_N (radius nukleon). Parameter isovektor terbaik hasil *fitting* setelah melalui beberapa tahap disajikan dalam Tabel 4.2.

β	r_N	gρ	<i>8</i> 4	χ^2	Keterangan
0.0005	0	7.8626	600.5	57.4	Fit ke-4
0.0005	0.66	11	4395.1	17.5	Fit ke-27
0.01	0	7.8432	597.04	57.4	Fit ke-4
0.01	0.66	12.21	4500	45.5	Fit ke-10
0.01	0.76	9.9122	5000	70.7	Fit ke-9

Tabel 4.2: Parameter isovektor terbaik hasil *fitting* pada nilai $\beta = 0.0005$ dan $\beta = 0.01$ untuk PNM.

Sekarang kita akan meninjau bagaimana efek fitting jika diekstrapolasi pada daerah low density. Untuk menggambarkan apakah ekstrapolasi mendapatkan hasil yang baik atau tidak, maka setiap iterasi fitting parameter dibuat plot sehingga setiap tahap iterasi dapat diketahui fit ke berapa yang ekstrapolasinya konsisten dengan model yang dikembangkan oleh Schwenk dan Pethick [3,5]. Tahap-tahap iterasi sampai mendapatkan hasil yang baik mengacu pada Tabel 6 dan Tabel 8. Ekstrapolasi pada kondisi *low density* ditunjukkan pada Gambar 16, Gambar 17, Gambar 18, Gambar 19, Gambar 20, Gambar 21, Gambar 22, Gambar 15, Gambar 23, Gambar 24, Gambar 25, Gambar 26, Gambar 27, dan Gambar 28. Dari hasil plot yang ditampilkan pada gambar tersebut, bahwa hasil yang konsisten dengan model Schwenk hanya pada nilai $\beta = 0.01$ dan radiasi nukleon 0.66 fm, yaitu pada fit ke-13 dan ke-14. Hasil yang hampir lolos model Schwenk pada $\beta = 0.01$ dengan radius nukleon 0.76 fm pada fit ke-13. Hasil ini bertentangan dengan parameter isovektor PNM pada daerah medium density, yang justru pada fit tersebut hasilnya tidak konsiten (ditunjukkan dengan kurva ke bawah). Kesimpulan yang diperoleh bahwa ekstrapolasi gagal pada daerah low density, dugaan sementara diakibatkan keterbatasan parameter, nilai β , dan r_N .

Gambar 4.4: (a) Persamaan keadaan tekanan terhadap rasio kerapatan terhadap kerapatan saturasi untuk *medium density* PNM. (b) *Binding energy* sebagai fungsi momentum fermi untuk *low density* PNM.

Gambar 4.4 (a) menunjukkan plot parameter isovektor terbaik dari hasil iterasi pada daerah *medium density*. Plot ini merupakan seleksi dari beberapa fit hingga diperoleh *fitting* parameter yang lolos standar [2]. Pada gambar diperlihatkan perbandingan antara kurva sebelum (B1R6-iufsu*) dan setelah *fitting*. Dari kurva terlihat bahwa semakin minimum nilai χ^2 hasilnya semakin tidak konvergen. Gambar 4.4 (b) merupakan kurva ekstrapolasi *fitting* parameter pada daerah *low density*. Poin bintang (B1R6-f13) dan poin merah (B1R7-f13) masing-masing menunjukkan hasil fit ke-13 pada $\beta = 0.01 r_N = 0.66$ fm dan fit ke-13 untuk $\beta = 0.01 r_N = 0.76$ fm. Kurva ini merupakan hasil *fitting* yang lolos model Schwenk [3,5]. Garis putus-putus biru (B1R6-fO) merupakan fit ke-27, di mana pada fit ini lolos standar Daniel, namun pada model Schwenk menunjukkan kurva yang jauh dari daerah seleksi. Demikian pula untuk garis putus-putus pink (B1R6-fO) dan hijau (B5R6fO), masing-masing fit ke-10 dan ke-9 pada radius 0.66 fm dan 0.76 fm. Pada fit ini, hasil bertentangan antara daerah *medium density* dan *low density*.

4.3 Neutron Star Matter (NSM)

Gambar 4.5 menunjukkan hubungan tekanan materi nuklir P dalam MeV fm⁻³ terhadap kerapatan energi ε dalam MeV fm⁻³ menggunakan model EOS NSM. Garis putus-putus hijau dan garis penuh merah menunjukkan EOS NSM pada $\beta = 0.0005$ $r_N = 0$ dan $r_N = 0.66$, garis putus-putus hitam, tosca, dan magenta masing-masing untuk nilai $\beta = 0.01 r_N = 0, r_N = 0.66$, dan $r_N = 0.76$. Kurva poin bintang kuning dan hitam pada Gambar 4.5 masing-masing menunjukkan EOS NSM untuk nilai $\beta = 0.01 r_N = 0.66$ fit ke-13 dan $r_N = 0.76$ fit ke-13, sebagaimana diketahui bahwa pada fitting parameter ini, pada medium density hasilnya tidak konvergen, dan sebaliknya pada low density mendapatkan hasil yang baik, demikian pula pada NSM hasilnya soft. Dari gambar tersebut menginformasikan bahwa semakin besar rapat energinya, semakin besar pula tekanannya, di mana tekanan materi nuklir pada pusat bintang neutron untuk parameter Set*, Set 1, dan Set 5 kurva cenderung sama dan stiff, sedangkan pada parameter Set 7 paling soft. Seiring dengan kenaikan rapat energi, tekanan kelima parameter menjadi berbeda. Perbedaan yang signifikan terjadi pada parameter Set 1 dengan tekanan maksimum 283 MeV fm⁻³, sedangkan parameter Set 6 paling besar mencapai 624 MeV fm⁻³.

Gambar 4.6 menggambarkan hubungan fraksi proton, neutron, elektron, dan muon terhadap kerapatan barion dalam kerapatan saturasi. Grafik tersebut menunjukkan bahwa semakin tinggi kerapatan, makin besar fraksinya (fraksi proton, muon, dan elektron), sedangkan pada fraksi neutron semakin tinggi kerapatan maka fraksinya semakin kecil. Dari kurva tersebut dapat juga diamati bahwa fraksi barion dan lepton dipengaruhi oleh radius nukleon.

Gambar 4.5: Hubungan tekanan materi nuklir P dalam MeV fm⁻³ terhadap kerapatan energi ε dalam MeV fm⁻³ menggunakan model EOS NSM dengan parameter Set 1, Set 2, Set 6, dan Set 7.

Universitas Indonesia

Gambar 4.6: Hubungan fraksi proton, neutron, elektron, dan muon terhadap kerapatan barion dalam kerapatan saturasi.

Universitas Indonesia

Efek variasi..., Suparti, FMIPA UI, 2014.

BAB 5 KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dalam penelitian ini telah dihasilkan parameter isoskalar dan isovektor. Parameter isoskalar yang diperoleh telah sesuai dengan hasil perhitungan DBHF sehingga dapat digunakan sebagai referensi dalam penelitian selanjutnya. Parameter isoskalar pada variasi $\beta = 0.0005$ pada radius 0 fm, 0.667 fm, 0.76 fm dengan χ^2 masing-masing sebesar 0.9, 0.5, 1.0 telah memenuhi daerah standar yang disarankan. Sedangkan pada variasi $\beta = 0.01$ dengan radius 0 fm, 0.667 fm, 0.76 fm, 0.83 fm, dan 0.99 fm, hasil terkonstrain pada radius 0.99 fm, yaitu tidak memenuhi standar. Parameter isovektor pada variasi $\beta = 0.0005$ hanya nilai radius 0.667 fm dengan $\chi^2 = 17.5$ yang memenuhi standar, sedangkan pada variasi $\beta = 0.01$ yang terpenuhi adalah radius 0.667 fm dan 0.76 fm dengan χ^2 masing-masing sebesar 45.5 dan 70.7. Parameter isovektor tidak mendapatkan hasil yang sempurna ketika diesktrapolasi pada daerah kerapatan rendah, sehingga dari hasil yang diperoleh dapat disimpulkan bahwa radius nukleon dan β sangat terbatasi. Penambahan radius nukleon dan penambahan nilai β juga memberi pengaruh terhadap fraksi bintang neutron, meningkatnya radius nukleon akan menambah jumlah partikel pada kerapatan yang tinggi. Parameter terbaik hasil *fitting* ditunjukkan pada tabel berikut.

β	r_N	gσ	gω	b_2	<i>b</i> ₃	<i>c</i> ₁	gρ	<i>8</i> 4
	0	12.243	15.99	-4419.1	-17	491.59	7.8626	600.5
0.0005	0.66	11.953	14.633	-9108.6	-17.5	1475.2	11	4395.1
	0.76	9.7676	11.515	-6116.4	-90	286.22	-	-
	0	11.949	15.512	-4342.6	-24.972	400.02	7.8432	597.04
	0.66	11.166	14.248	-4193.1	-48.045	257.76	12.21	4500
0.01	0.76	11.262	14.399	-4188.2	-53.174	270.94	9.9122	5000
	0.83	11.687	15.01	-4517.2	-60	347.65	-	-

Tabel 5.1: Parameter terbaik hasil *fit* SNM dan PNM pada $\beta = 0.0005$ dan $\beta = 0.01$.
5.2 Saran

Penelitian lebih lanjut pada variasi β yang lebih besar dan *fit* parameter isovektor lebih dari 2 konstanta kopling dapat menjadi perbaikan pada penelitian ini. Penelitian selanjutnya juga dapat dilakukan untuk mengetahui *properties* bintang neutron dengan menggunakan persamaan TOV.

DAFTAR REFERENSI

- [1] K. Glendenning, *Compact Stars: Nuclear Physics, Particle Physics, and General Relativity* (Springer, New York, 2000), 2nd ed.
- [2] P. Danielewicz, R. Lacey, and W. G. Lynch, *Determination of the Equation of State of Dense Matter*, Science 298, 1592 (2000).
- [3] A. Schwenk and C. J. Pethick, *Resonant Fermi Gases with a Large Effective Range*, Phys. Rev. Lett. **95**, 160401 (2005).
- [4] A. W. Steiner, J. M. Lattimer, and E. F. Brown, *The Equation of State from Observed Masses and Radii of Neutron Stars*, Astrophys. J. **722**, 33 (2010).
- [5] F.J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G. Shen, *Relativistic effective interaction for nuclei, giant resonances, and neutron star*, Phys. Rev. C 82, 055803 (2010).
- [6] H. Karttunen, P. Kroger, H. Oja, M. Poutanen, and K. J. Donner (Eds), Fundamental Astronomy (Springer, New York, 2006).
- [7] J.P. Diener and Willem, *Relativistic Mean-Field Theory Applied to the Study of Neutron Star Properties* (Thesis, Stellenborsch University, 2008).
- [8] S. B. Ruster, M. Hempel, and J. Schaffner-Bielich, *Outer Crust of Nonaccreting Cold Neutron Stars*, Phys. Rev. C 73, 035804 (2006).
- [9] T. Mart and A. Sulaksono, *Nonidentical Protons*, Phys. Rev. C 87, 025807 (2013).
- [10] M. Urbanec, *Equations of State and Structure of Neutron Stars* (Disertation, Silesian University, 2010).
- [11] E. N. E. van Dalen and H. Muther, Spinodal Instabilities in Asymmetric Nuclear Matter Based on Realistic NN Interactons, Phys. Rev. C 87, 024317 (2013).
- [12] C. J. Horowitz and B. D. Serot, *The Relativistic Two-Nucleon Problem in Nuclear Matter*, Nucl. Phys. A 464, (1987).

- [13] H. Kouno, K. Koide, T. Mitsumori, N. Noda, and A. Hasegawa, *Properties* of Nucleon Matter in Cuttof Filed Theory and the Low-Energy Effective Lagrangian in the Hartree Approximation, Prog. Theor. Phys. **96**, 191 (1996).
- [14] D. H. Rischke, M. I. Gorenstein, H. Stoker, and W. Greiner, *Exluded Volume Effect for the Nucleon Matter Equation of State*, Z. Phys. C **51**, 485 (1991).
- [15] R. M. Aguirre and A. L. De Paoli, Neutron Star Structure in a Quark Model with Exluded Volume Correction, Phys. Rev. C 68, 055804 (2003).
- [16] P. K. Panda, M. E. Bracco, M. Chiapparini, E. Conte, and G. Krein, *Exlude Volume Effects in the Quark Meson Coupling*, Phys. Rev. C 65, 065206 (2002).
- [17] C. Fuchs, *Lecture Note in Physics: The Relativistic Dirac Brueckner Approach to Nuclear Matter* (Springer, German, 1995).
- [18] E. N. E. van Dalen, C. Fuchs, and Amand Faessler, *The Relativistic Dirac Brueckner Approach to Asymmetric NUclear Matter*, arXiv. Nucl, 0407070v2 (2004).
- [19] M. Hjorth-Jensen, *The Effective Interactions for Nuclear Sytems*, Phys. Rep, 261 (1995).

fit ke-	r_N	8σ	gω	b_2	b_3	<i>c</i> ₁	χ^2
1		12.854	16.886	-4873.9	-5	685.27	1
2		11	14.462	-2763.1	-8	291.83	1.7
3	0	11	14.462	-2763.1	-8	291.83	1.7
4		12.495	16.366	-4583.1	-12	568.29	0.9
5		12.342	16.139	-4478.3	-15	521.24	0.9
6		12.243	15.99	-4419.1	-17	491.59	0.9
1		8.1841	10.003	-1700	0.55	200	6.9
2		8.3381	10.25	-1800	0.7	229.91	6.4
3		8.4863	10.393	-2100	1	270	5.2
4		8.988	10.969	-3000	0.1	400	3.2
5		10.529	13.028	-5460.6	-2	900	1.1
6		11	13.584	-6542.2	-5	1088.5	0.8
8		11.587	14.259	-8000	-10	1335.7	0.6
9	0.66	11.9	14.6	-8891.5	-11	1500	0.6
10		11.939	14.646	-9000	-11	1522.4	0.6
11		11.97	14.675	-9100	-12	1531.5	0.6
12		11.966	14.666	-9100	-13	1520.9	0.6
13		11.969	14.665	-9120.6	-14	1514.2	0.6
14		11.972	14.664	-9137.8	-15	1507.2	0.6
15		11.975	14.663	-9156.1	-16	1500.3	0.6
16		11.953	14.633	-9108.6	-17.5	1475.2	0.5
1		10	12.137	-6000	-10	1500	35.1
2		9.7699	12	-6000	-12	1700	17.4
3		9.2094	11	-6364.4	-14	1800	7.9
4		8.7607	10	-7000	-15	1837.8	5.7
5		8.8039	10	-7333.2	-16	1900	5.6
6		8.8397	10	-7702.4	-17	2000	5.4
7		8.7679	9.7567	-8256.9	-19	2100	5.2
8		8.8613	9.9037	-8500	-20	2200	5.1
9		8.8961	9.9539	-8600	-21	2225.2	5.1

Tabel 2: Parameter isoskalar hasil *fitting* untuk nilai $\beta = 0.0005$ dan $r_N = 0, 0.66$ fm, 0.76 fm, 0.83 fm, dan 0.99 fm.

fit ke-	r_N	gσ	gω	b_2	<i>b</i> ₃	<i>c</i> ₁	χ^2
10		8.9433	10.008	-8800	-22.5	2271.2	5
11		8.9554	10.027	-8800	-24	2243.8	5
12		8.9843	10.024	-9081.7	-25.5	2295	4.9
13	0.76	9.031	10.115	-9100	-27	2298.8	4.9
14		9.0558	10.144	-9200	-28	2317.2	4.8
15		9.0888	10.185	-9300	-30	2317.1	4.8
16		9.1332	10.232	-9500	-32	2350	4.7
17		9.1955	10.289	-9814.2	-35	2400	4.6
18		9.2494	10.365	-10000	-36	2463.8	4.5
19		9.2729	10.392	-10100	-37	2482.1	4.5
20		9.2963	10.418	-10200	-38	2500.4	4.5
21		9.3195	10.444	-10300	-39	2518.8	4.5
22		9.3476	10.468	-10439	-41	2525	4.4
23		9.3963	10.533	-10600	-43	2554.8	4.3
24		9.4272	10.57	-10700	-45	2554.2	4.3
34		9.7676	11.515	-6116.4	-90	286.22	1
1		8.7325	9	-8050	-28	2325	111.9
2		8.1725	8	-8000	-29	2375	88.2
3		8	8.0927	-7000	-31	2425	64.5
4		7.2215	7	-6000	-33	2600	32.8
5		7.2909	7.7099	-5000	-34	2700	29.8
6		7.3912	8.0725	-4731.2	-35	2600	29.3
7	0.83	7.48	8.2779	-4547	-36	2300	29.2
8		7.5332	8.3879	-4517.7	-37	2200	29.1
9		7.5884	8.5016	-4485	-38	2100	29
10		7.6716	8.6852	-4352.3	-39	1900	28.8
11		7.8166	9	-4053.1	-41	1500	28.4
12		8.1286	9.6231	-3900	-45	1200	27.7
13		8.4485	10.219	-3889.8	-50	1000	26.7
14		8.4485	10.219	-3889.8	-50	1000	24
1		10	9	-8050	-28	2325	976.1
2		9.2803	13	-921.24	-26	2200	208
3		9.4666	8	-7600	-30	2400	745.8
4		10.386	10	-7200	-32	2600	879.9
5		9.7823	9	-7100	-33	2700	740
6		9.7259	9	-7000	-34	2800	712.9
7	0.99	9.1679	8	-6900	-35	2900	622.2
8		9.0108	8	-6500	-38	3100	567.1
9		8.786	8	-6000	-42	3500	495.8
10		8	7.0257	-5000	-46	4000	404.7
11		9.0252	11	-4000	-44.5	6000	328.7
14		10.466	16.127	-2277.9	-55	3000	166.2

Tabel 3: Lanjutan parameter isoskalar hasil *fitting* untuk nilai $\beta = 0.0005$ dan $r_N = 0$, 0.66 fm, 0.76 fm, 0.83 fm, dan 0.99 fm.

fit ke-	r_N	gσ	gω	b_2	<i>b</i> ₃	<i>c</i> ₁	χ^2
1		12.243	15.99	-4419.1	-17	491.59	0.9
2		12.142	15.837	-4361.6	-19	462.14	0.8
3	0	12.046	15.688	-4315.1	-21	434.48	0.8
4		11.949	15.512	-4342.6	-24.972	400.02	0.8
1		11.911	15	-9200	-14	1475	211.9
2		12.831	16	-9300	-12	1350	93.2
3		13.5	16.858	-9100	-11.5	1300	33.4
4		13.727	17	-9000	-13.495	1200	18.5
5		14	17.552	-9000	-11	1322.4	13
6		14.024	18	-8000	-13	1314.5	5.4
8		13.812	18.065	-7000	-15	1240.8	3.6
9		13.722	17.967	-6823.6	-16	1200	3.5
10		13.528	17.713	-6500	-17	1114.8	3.3
11		13.486	17.677	-6398.3	-17	1100	3.3
12		13.323	17.436	-6200	-20	1018.2	3.1
13	0.66	13.131	17.151	-6000	-25	918.87	2.8
14		13.12	17.152	-6000	-28.349	900	2.6
15		12.403	16.179	-5000	-30	650.57	2.1
16		12.402	16.071	-5293.9	-40	600	1.6
17		12	15.4	-5115.7	-50	440.29	1.1
18		12	15.341	-5266.8	-54.201	421.81	1.1
19		11.865	15.193	-5015.4	-51.462	400	1.1
20		11.262	14.357	-4356.6	-50	269.66	1
21		11.166	14.248	-4193.1	-48.045	257.76	1
22		11.166	14.248	-4193.1	-48.045	257.76	1
1		8	9.2354	-10000	-30	2300	472
2		7.941	9	-10100	-29	2100	440.7
3		7.9973	9	-10200	-27	2000	421
4		7.4589	8	-10300	-26	1900	398.8
5		7.4954	8	-10400	-28	1800	388.9

Tabel 4: Parameter isoskalar hasil *fitting* untuk nilai $\beta = 0.01$ dan $r_N = 0$, 0.66 fm, 0.76 fm, 0.83 fm, dan 0.99 fm.

fit ke-	r_N	gσ	gω	b_2	<i>b</i> ₃	<i>c</i> ₁	χ^2
6		8.8432	10	-10600	-26	1600	349.1
7		10	11.474	-10900	-23	1400	273.7
8	0.76	11.539	13	-11100	-21	1000	126.7
9		13	14.867	-11000	-20	1000	73.6
10		13.447	16	-10000	-30	1075.4	45.8
11		14.482	18.62	-9000	-40	1500	6
12		13.924	18.104	-7704	-50	1200	3.9
13		13.618	17.607	-7419.2	-60	1000	2.9
14		13.274	17.035	-7150.2	-70	800	2
15		12.899	16.358	-7000	-81.502	600.24	1.6
16		12.417	15.84	-5983.4	-70	500	1.3
17		11.795	15.058	-5000	-61.478	362.91	1
18		11.421	14.611	-4389.8	-54.846	300	1
19		11.262	14.399	-4188.2	-53.174	270.94	0.9
1		7	8.5967	-5500	-35	1900	753.5
2		6.0593	6	-7000	-30	1500	495.4
3		8.4773	9	-9000	-1.45E-010	1000	252.7
4		8.4773	9	-9000	-9.90E-010	1000	252.7
5		13.62	17.769	-7000	-60	1058.5	3.8
6		13.762	17.768	-7760.3	-80	1000	2.6
7		14.921	19.306	-10000	-84.624	1600	4.8
8		14.025	17.883	-8796.8	-100	1000	2.2
9	0.83	14.025	17.883	-8796.8	-100	1000	2.2
10		14.191	17.986	-9406.4	-111.95	1008.7	1.9
11		13.859	17.602	-8640.6	-103.46	900	1.6
12		13.173	16.831	-7118.3	-86.976	700	1.5
13		13.012	16.554	-7000	-89.192	625.796	1.4
14		12.81	16.396	-6420.1	-80	600	1.3
15		12.523	16.002	-6000	-77.273	513.69	1.1
16		12.138	15.536	-5325.3	-70	427.87	1
17		11.98	15.366	-5000	-65.505	402.87	1
18		11.929	15.332	-4856.2	-63.119	400	0.9
19		11.687	15.01	-4517.2	-60	347.65	0.9
1		14.504	19.388	-7000	-50	1700	8.5
2	0.00	14.242	19.197	-6495	-60	1500	4.9
3	0.99	13.686	18.028	-6352	-80	1000	1.3
4		14.134	18.425	-7595.3	-100	1100	1.1
5		13.264	17.33	-5882.5	-80.243	784.06	0.9
6		13.263	17.33	-5882.5	-80.242	784.05	0.9
7		13.263	17.33	-5882.5	-80.242	784.03	0.9

Tabel 5: Lanjutan parameter isoskalar hasil *fitting* untuk nilai $\beta = 0.01$ dan $r_N = 0$, 0.66 fm, 0.76 fm, 0.83 fm, dan 0.99 fm.

Tabel 6: Parameter isovektor hasil *fitting* untuk nilai $\beta = 0.0005$ dan $r_N = 0, 0.66$ fm, 0.76 fm, 0.83 fm, 0.99 fm.

fit ke-	r_N	gρ	<i>8</i> 4	χ^2
1		13	100	10897.1
2	0	10	300	1120.3
3		7.5086	500	57.5
4		7.8626	600.5	57.4
1		13	3000	384.5
2		9	120	2159.7
3		12	60	11135.6
4		10	100	4051.7
5		9	120	2159.7
6		7	140	403.2
7		5.2639	200	57.4
8		5.167	160	58.9
9		5.2158	180	58.1
10		5.2639	200	57.4
-11		5.3351	230	56.3
12		5.3818	250	55.6
13		5.4965	300	54
14		5.717	400	51
15	0.66	5.9271	500	48.3
16		6.1282	600	46
17		6.1283	660.71	43.9
18		6.8612	1000	38.6
19		7.6608	1500	32.2
20		8	1806.5	29.6
21		8.3706	2000	27.8
22		8.6353	2200	26.3
23		9.0149	2500	24.5
24		9.6087	3000	21.9
25		9.609	3078.9	20

fit ke-	r_N	gρ	<i>8</i> 4	χ^2
26		10.681	4000	18.4
27		11	4395.1	17.5
28		13.317	7000	13.9
29		14.773	9000	13.2
30		15.022	9370.8	13.2
1		11	100	10853.3
2		7	200	1900
3		5	400	667.8
4		4	700	434.8
5		3	1000	361
6		2	2000	332.8
7		1.3425	4000	328.9
8	0.76	3.5915	6000	327.4
9		4.9739	8000	325.2
10		6.075	10000	323.2
11		7.0145	12000	321.3
12		7.8439	14000	319.7
13		8.5918	16000	318.3
14		9.9084	20000	315.9
15		10.504	2500	313.9
16		10.513	25005	313.9

Tabel 7: Lanjutan parameter isovektor hasil *fitting* untuk nilai $\beta = 0.0005$ dan $r_N = 0, 0.66$ fm, 0.76 fm, 0.83 fm, 0.99 fm.

Gambar 1: *Fitting* parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0$.

Gambar 2: *Fitting* parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit 1-8).

Gambar 3: *Fitting* parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit 9-16).

Gambar 4: *Fitting* parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit 17-24).

Gambar 5: *Fitting* parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit 25-30).

Gambar 6: *Fitting* parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.76$ fm (fit 1-8).

Gambar 7: *Fitting* parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.76$ fm (fit 9-16).

Tabel 8: Parameter terbaik isovektor hasil *fitting* untuk nilai $\beta = 0.01$ dan $r_N = 0, 0.66$ fm, 0.76 fm, 0.83 fm, 0.99 fm.

-	fit ke-	r_N	gρ	<i>8</i> 4	χ^2
-	1		13	100	10889.2
	2	0	10	300	1046.5
	3		7.5014	500	57.5
	4		7.8432	597.04	57.4
-	1		13	1000	13097.9
	2		10	200	2586.1
	3		8	300	549.8
	4		6	500	81.2
	5		5.8876	600	74.9
	6		6.9025	1000	67.6
	7	0.66	7.9564	1500	61
	8		9.656	2500	52.9
	9		11	3500	48.2
	10		12.21	4500	45.5
	-11		13.246	5500	43.8
	12		14.176	6500	43
	13		15.023	7500	42.6
	14		15.399	7976.1	42.5
(1		13	100	14753.8
	2		10	200	3347.7
	3	\leq	8	300	916.1
	4		5	500	117.7
	5		5.0131	1000	95
	6		6.6184	2000	85.3
	7	0.76	7.8913	3000	78.8
	8		8.9682	4000	74.2
	9		9.9122	5000	70.7
	10		11	7000	66.6
	11		12.897	9000	62.9

fit ke-	r_N	gρ	<i>8</i> 4	χ^2
12		14.093	11000	60.8
13		14.174	11638	60.4
1		10	100	5895.6
2		7	200	1109.7
3		5	300	314.8
4		3	500	140.1
5		2	1000	127.3
6		2.493	1500	126.3
7	0.83	3.0612	2000	125.2
8		4.8801	4000	121.4
9		6.2875	6000	118.5
10		8.4868	10000	114.5
11		9.3997	12000	113
12		10.617	15000	111.3
13		12	20000	109.4
14		12.393	22384	108.8
1		10	100	8818.2
2		7	200	2444.1
3		5	400	944.1
_4	0.99	3	600	507.1
5		3	600	416.5
6		1	1500	384.1
7		1.21E-007	1956.8	376.9
8		1.21E-007	1956.8	376.9

Gambar 8: *Fitting* parameter isovektor pada $\beta = 0.01$ dan $r_N = 0$.

fit1

Gambar 9: *Fitting* parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.6$ (fit 1-8). **Universitas Indonesia**

Gambar 10: *Fitting* parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.66$ fm (fit 9-16).

Gambar 11: *Fitting* parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.76$ fm (fit 1-8). Universitas Indonesia

Gambar 12: *Fitting* parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.76$ fm (fit 9-16).

Gambar 13: *Fitting* parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.83$ fm (fit 1-8. Universitas Indonesia

Gambar 14: *Fitting* parameter isovektor pada $\beta = 0.01$ dan $r_N = 0.83$ fm (fit 9-16).

Gambar 15: *Fitting* parameter isovektor untuk daerah *low density* pada $\beta = 0.01$ dan $r_N = 0$.

Gambar 16: *Fitting* parameter isovektor untuk daerah *low density* pada $\beta = 0.0005$ dan $r_N = 0$.

Gambar 17: *Fitting* parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit 1-8).

Gambar 18: *Fitting* parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit 9-16).

Gambar 19: *Fitting* parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit 17-24).

Gambar 20: *Fitting* parameter isovektor untuk daerah *low density* pada $\beta = 0.0005$ dan $r_N = 0.66$ fm (fit 25-30).

Gambar 21: *Fitting* parameter isovektor pada $\beta = 0.0005$ dan $r_N = 0.76$ fm (fit 1-8).

Gambar 22: *Fitting* parameter isovektor untuk daerah *low density* pada $\beta = 0.0005$ dan $r_N = 0.76$ fm (fit 9-16).

Gambar 23: *Fitting* parameter isovektor untuk daerah *low density* pada $\beta = 0.01$ dan $r_N = 0.66$ fm (fit 1-8).

Gambar 24: *Fitting* parameter isovektor untuk daerah *low density* pada $\beta = 0.01$ dan $r_N = 0.66$ fm (fit 9-16).

Gambar 25: *Fitting* parameter isovektor untuk daerah *low density* pada $\beta = 0.01$ dan $r_N = 0.76$ fm (fit 1-8).

Universitas Indonesia

Gambar 26: *Fitting* parameter isovektor untuk daerah *low density* pada $\beta = 0.01$ dan $r_N = 0.76$ fm (fit 9-16).

Gambar 27: *Fitting* parameter isovektor untuk daerah *low density* pada $\beta = 0.01$ dan $r_N = 0.83$ fm (fit 1-8).

Gambar 28: *Fitting* parameter isovektor untuk daerah *low density* pada $\beta = 0.01$ dan $r_N = 0.83$ fm (fit 9-16).