001 Hak Akses (open/membership)membership
700 Entri Tambahan Nama OrangWiwien Heru Wiyono, promotor; Prasenohadi, co-promotor; Azizah G Icksan, co-promotor
336 Content Typetext (rdacontent)
264b Nama PenerbitFakultas Kedokteran Universitas Indonesia
710 Entri Tambahan Badan KorporasiUniversitas Indonesia. Fakultas Kedokteran
049 No. Barkod07-23-82125201
504 Catatan Bibliografipages 143-154
852 LokasiPerpustakaan UI
338 Carrier Typeonline resource (rdacarrier)
590 Cat. Sumber Pengadaan Koleksi;;;;
903 Stock Opname
534 Catatan Versi Asli
053 No. Induk07-23-82125201
Tahun Buka Akses2023
653 Kata Kuncicovid-19; logistic regression; mortality prediction; machine learning
040 Sumber PengataloganLibUI ind rda
245 Judul UtamaPrediksi Kematian Pasien COVID-19 Berdasarkan Skoring Variabel Menggunakan Regresi Logistik dan Machine learning = Mortality Prediction of Corona Virus Disease (COVID)-19 Patients Based on Scoring Developed with Logistic Regression and Machine Learning
264c Tahun Terbit2021
650 Subyek TopikCOVID-19 Pandemic, 2020-; Mortality
850 Lembaga PemilikUniversitas Indonesia
520 Ringkasan/Abstrak/IntisariDalam dua tahun terakhir pandemi corona virus disease 2019 (COVID-19) telah menginfeksi > 220 juta orang dan 5 juta orang meninggal. Di Indonesia > 4 juta orang terinfeksi dan > 140.000 orang meninggal. Pada puncak pandemi, kebutuhan perawatan tidak seimbang dengan sarana rumah sakit sehingga WHO menganjurkan untuk memprioritaskan pasien secara ekual. Untuk itu diperlukan prediktor luaran pasien COVID-19. Penelitian ini bertujuan menyusun prediktor luaran pasien COVID-19 menggunakan regresi logistik dan machine learning. Penelitian terdiri atas 2 tahap. Tahap pertama adalah kohort retrospektif untuk menyusun prediktor kematian di rumah sakit dengan regresi logistik dan machine learning (decision tree, random forest, support vectore machine, gradient boost and extreme gradient boost). Pasien terkonfirmasi COVID-19 diinput di data registri REG-COVID-19 pada bulan Maret?Juli 2020 di RS Persahabatan (RSP) dan RS Universitas Indonesia (RSUI). Tahap kedua adalah kohort prospektif pada pasien COVID-19 di RSP, RSUI dan RSPI Suliati Saroso pada bulan Maret?Mei 2021. Data yang diinput adalah data demografi, gejala klinis, komorbid, laboratorium, skor Brixia dari radiografi toraks, luaran pasien dari perawatan dan lama rawat. Pada tahap penyusunan diperoleh 271 subjek untuk analisis machine learning, 239 subjek untuk model 1, sebanyak 180 subjek model 2, dan 152 subjek model 3 dan model 4. Hasil analisis regresi logistik model 1 terdiri atas 7 variabel yaitu demam, diabetes melitus, frekuensi napas, saturasi O2, leukosit, SGOT dan CRP dengan AUC 0,930. Model 2 memberikan hasil hampir sama tetapi SGOT menjadi SGPT dengan AUC 0,926. Model 3 memiliki AUC 0,919 dan model 4 memberikan AUC 0,924 dengan variabel D dimer > 2000 menjadi salah satu prediktor. Validasi semua model regresi logistik dan machine learning menunjukkan penurunan AUC, tetapi tidak berbeda bermakna (uji perbandingan AUC, p = 0,683?0,736). Perbandingan model regresi logistik dan machine learning juga tidak berbeda bermakna (uji perbandingan AUC dengan rumus Hanley, p = 0,492?0,923). Disimpulkan prediksi kematian pasien COVID-19 menggunakan regresi logistik dan machine learning memiliki akurasi yang baik sehingga regresi logistik dan machine learning dapat dijadikan prediktor luaran pasien COVID-19. ......Corona virus disease 2019 (COVID-19) pandemic has lasted almost 2 years worldwide with more than two hundred million world population were infected and almost 5 million (2%) death. In Indonesia, there have been more than 4 million people were infected with more than 140.000 (3.5%) death. At the peak of the outbreak there were discrepancy between health care facilities and demands. WHO recommended to prioritize patient equally, to avoid patient discrimination by social class, race, and gender. The best prediction tool should be valid, reliable and feasible. Many studies develop assessment with logistic regression and machine learning with the goal to improve accuracy. Some study showed variety of predictors in outcome prediction, in this study we developed and validated assessment tool to predict hospital mortality comparing logistic regression and machine learning, included support vector machine (SVM), decision tree (DT), random forest (RF), gradient boost (GB) and extreme gradient boost (XGB). Our study was conducted in 2 stages. The first stage study was cohort retrospective to develop assessment tool to predict hospital mortality by comparing logistic regression and machine learning among hospitalized COVID-19 patients from March to July 2020. The second was cohort prospective study among the same population, to validate the tools. The development data were collected from Persahabatan hospital and Universitas Indonesia hospital who registered in REG-COVID-19, 271subjects were eligible for machine learning analysis and 239 subjects for logistic regression data set 1; 180 subjects for data set 2; 152 for data set 3 and 4. Analysis of data set 1 resulted in 8 variables as mortality prediction include fever, DM, respiratory rate (RR), oxygen saturation, leucocyte, ALT > 42, CRP > 88, with AUC 0,930. Data set 2 resulted in similar variables except AST, with AUC 0,926. Data set 3 resulted in 6 variables with AUC 0,919 and Data set 4 resulted in 7 variables included fever, HR, RR, leucocyte, age above 52, CRP > 86 and D-dimer > 2000 with AUC 0,924. Validation of all models showed decreasing AUC. Machine learning analysis resulted in 5 models with the best was XGB among all set data with AUC between 0,8?0,9. There were decreasing of AUC of all models, but not statistically different (p 0.683?0.736). Comparing developed models with logistic regression and machine learning showed there were differences but not statistically significant. (p 0.492-0.923)
904b Pemeriksa Lembar Kerja
090 No. Panggil SetempatD-pdf
d-Entri Utama Nama Orang
500 Catatan UmumTidak dapat diakses di UIANA, karena: akan ditulis dalam bahasa Inggris untuk dipersiapkan terbit pada Jurnal Internasional yaitu Biostatistics yang diprediksi akan dipublikasikan pada bulan Mei tahun 2024
337 Media Typecomputer (rdamedia)
d-Entri Tambahan Nama Orang
526 Catatan Informasi Program StudiIlmu Kedokteran
100 Entri Utama Nama OrangRaden Rara Diah Handayani, author
264a Kota TerbitJakarta
300 Deskripsi Fisikxxi, 154 pages : illustration + appendix
904a Pengisi Lembar Kerjatanti-Desember2023
Akses Naskah Ringkas
856 Akses dan Lokasi Elektronik
502 Catatan Jenis KaryaDisertasi
041 Kode Bahasaind