001 Hak Akses (open/membership)membership
700 Entri Tambahan Nama OrangSiti Aminah, supervisor; Gianinna Ardaneswari, supervisor; Gatot Fatwanto Hertono, examiner; Helen Burhan, examiner
336 Content Typetext (rdacontent)
264b Nama PenerbitFakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia
710 Entri Tambahan Badan KorporasiUniversitas Indonesia. Fakultas Matematika dan Ilmu Pengetahuan Alam
049 No. Barkod14-25-61018995
504 Catatan Bibliografipages 90-94
852 LokasiPerpustakaan UI
338 Carrier Typeonline resource (rdacarrier)
590 Cat. Sumber Pengadaan KoleksiDeposit;Deposit
903 Stock Opname
534 Catatan Versi Asli
Tahun Buka Akses2025
053 No. Induk14-25-61018995
653 Kata Kunciprotein sequence; pneumonia; random forest; support vector machine; weighted majority algorithm
040 Sumber PengataloganLibUI ind rda
245 Judul UtamaModel Ensemble Random Forest dan Support Vector Machine untuk Mendeteksi Penyakit Pneumonia Menggunakan Data Sekuens Protein = Ensemble Model of Random Forest and Support Vector Machine for Detecting Pneumonia Using Protein Sequence Data
264c Tahun Terbit2024
650 Subyek TopikSupport vector machines; Amino acid sequence -- Mathematical models; Pneumonia
850 Lembaga PemilikUniversitas Indonesia
520 Ringkasan/Abstrak/IntisariISPA atau infeksi saluran pernapasan akut adalah infeksi yang menyerang saluran pernapasan, baik saluran pernapasan atas maupun bawah. Salah satu penyakit yang termasuk dalam ISPA adalah pneumonia. Pneumonia merupakan infeksi paru-paru yang dapat memengaruhi kesehatan manusia secara serius. Pneumonia memengaruhi paru-paru bagian bawah dan menjadi penyebab area tersebut dipenuhi cairan lendir atau nanah. Pneumonia dikarenakan oleh berbagai agen patogen seperti virus, bakteri, dan jamur. Bakteri yang paling sering menyebabkan pneumonia adalah Streptococcus pneumoniae. Selain itu, Mycobacterium tuberculosis juga merupakan bakteri penyebab pneumonia di beberapa negara Asia. Berdasarkan hasil radiologi, pneumonia mirip dengan pneumonia tuberkulosis. Diagnosis dini sangat berperan penting dalam pengelolaan dan pengobatan efektif untuk penyakit ini. Dengan adanya kemajuan di bidang bioinformatika, sekuens protein menjadi salah satu pendekatan yang potensial untuk mendeteksi pneumonia secara cepat dan akurat. Oleh karena itu, penelitian ini adalah pendeteksian penyakit pneumonia dengan sekuens protein. Ekstraksi fitur untuk menjadi data numerik dibutuhkan pada penelitian ini dengan metode discere Penelitian ini menggunakan metode ensemble dari model Random Forest dan Support Vector Machine (SVM) dengan weighted majority algorithm (WMA) untuk mendeteksi penyakit pneumonia menggunakan sekuens protein Streptococcus pneumoniae dan Mycobacterium tuberculosis sebagai pembanding yang didapatkan melalui situs UniProt. Hasil penelitian ini menunjukkan bahwa metode ensemble model Random Forest dan model SVM dengan metode WMA memiliki kinerja terbaik dengan perbandingan data training dan data testing sebesar 80:20 didapat nilai akurasi sebesar 99,17%, nilai sensitivitas sebesar 99,65%, nilai spesifisitas sebesar 97,56%, dan nilai ROC-AUC sebesar 98,61%. ......Infection of Acute Respiratory (ARI) is an infection that attacks the respiratory tract, affecting both the upper and lower respiratory tracts. One of the diseases included in ARI is pneumonia. Pneumonia is a lung infection that can seriously impact human health. It affects the lower part of the lungs and causes the area to fill with mucus or pus. Pneumonia can be caused by various pathogens such as viruses, bacteria, and fungi. The bacterium most commonly causing pneumonia is Streptococcus pneumoniae. Additionally, Mycobacterium tuberculosis is also a bacterial cause of pneumonia in several Asian countries. Based on radiological results, pneumonia is similar to tuberculosis pneumonia. Early diagnosis is crucial in the management and effective treatment of this desease. With advancements in bioinformatics, protein sequence has become a potential approach for the rapid and accurate detection of pneumonia. Therefore, this research focuses on the detection of pneumonia using protein sequences. Feature extraction is required to convert the data into numerical form using discere method. This research uses an ensemble method combining Random Forest and Support Vector Machine (SVM) models with the weighted majority algorithm (WMA) to detect pneumonia using protein sequences of Streptococcus pneumoniae and Mycobacterium tuberculosis for comparison. This protein sequences obtained from the UniProt website. The results of this research indicate that the ensemble method of Random Forest and SVM with WMA achieved the best performance with a training to testing data ratio of 80:20 with 99,17% accuracy, 99,65% sensitivity, 97,56% specificity, and 98,61% ROC-AUC score.
904b Pemeriksa Lembar KerjaAmiarsih Indah Purwiati-Maret 2024
090 No. Panggil SetempatS-pdf
d-Entri Utama Nama Orang
500 Catatan UmumTidak dapat diakses di UIANA, karena: akan ditulis dalam bahasa Inggris untuk dipersiapkan terbit pada Jurnal Internasional yaitu Journal of Electrical and Computer Engineering yang diprediksi akan dipublikasikan pada bulan Maret tahun 2025
337 Media Typecomputer (rdamedia)
d-Entri Tambahan Nama Orang
526 Catatan Informasi Program StudiMatematika
100 Entri Utama Nama OrangRyan Fathurrachman, author
264a Kota TerbitDepok
300 Deskripsi Fisikxiii, 94 pages : illustration + appendix
904a Pengisi Lembar KerjaAmiarsih Indah Purwiati-Maret 2024
Akses Naskah Ringkas
856 Akses dan Lokasi Elektronik
502 Catatan Jenis KaryaSkripsi
041 Kode Bahasaind