UI - Tesis (Membership) :: Kembali

UI - Tesis (Membership) :: Kembali

Pengukuran risiko operasional dengan Monte Carlo Simulation: studi kasus pada PT Bank ?X?

Pesiwarissa, Darcel Anadona Indria; Mochamad Muslich, supervisor (Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006 )

 Abstrak

Krisis perbankan tempo lalu ternyata menjadi pelajaran yang berharga bagi kalangan perbankan, termasuk pihak pemegang otoritas perbankan, yakni Bank Indonesia (BI). Hikmah dari kejadian tersebut adaiah semua pihak menjadi mawas diri untuk bekerja lebih baik dan profesional pada masa mendatang. Sebelum krisis, unsur pengawasan tidak dilakukan secara optimal dan para pelaku perbankanpun tidak memperhitungkan berbagai macam faktor risiko bisnis.
Namun setelah itu, BI sebagai koordinator perbankan nasionalpun mulai mengkaji dart menata kembali industri yang telah dihantam badai yang paling dahsyat, yang selama ini belum pernah terjadi dalam sejarah perbankan nasional. Pada awal Januari 2004 BI menerbitkan Arsitektur Perbankan Indonesia (API) yang merupakan sebuah program menyeluruh yang dapat dijadikan pedoman bagi seluruh kalangan perbankan hingga 2010.
Ada delapan pilar API yang mesti dilaksanakan oleh para pelaku bisnis perbankan. Salah satu pilar antara lain menyebutkan tentang perlunya manalemen risiko (risk nianagenrent) bagi kalangan perbankan. Pemberlakuan ketentuan BI No. 5/8/PBI/2003 tentang Penerapan Manajemen Risiko bagi Bank Umum yang mewajibkan bank memasukkan faktor risiko operasional ke dalam perhitungan kewajiban penyediaan modal minimum diharapkan dapat memperkuat sistem pengawasan perbankan secara menyeluruh.
Dalam rangka menerapkan manajcmen risiko operasional secara efektif, maka bank "X" harus mampu mengidentifikasi risiko operasional dan mengukurnya. Hasil identifikasi risiko operasional digambarkan pada LEDB berupa kejadian kerugian (loss event), penyebab kerugian dan dampak dari kejadian kerugian dalam jumlah uang.
Untuk keperluan pengukuran risiko operasional mula-mula dilakukan pengumpulan data kerugian dari LEDB. Selanjutnya data disaring untuk keperluan penelitian dan dianalisis secara statistic. Data kerugian dan data observasi jumlah kejadian kerugian digunakan sebagai dasar pembuatan severity of loss probability model dan frequency of loss probability model.
Kedua model tersebut diuji masing-masing dengan menggunakan uji Kolmogorov-Smirnov dan uji Chi-Square. Berdasarkan uji model tersebut dipilih Exponential distribution dan Poisson distribution.
Selanjutnya, guna pengukuran risiko operasional dilakukan simulasi Monte Carlo. Untuk itu dilakukan penetapan asumsi-asumsi bagi setiap jumlah kerugian dan jumlah kejadian kerugian. Penetapan asumsi tersebut dilakukan terhadap setiap angka kerugian dan jumlah kejadian kerugian. Angka jumlah kerugian diasumsikan mengikuti Exponential distribution, sedangkan angka jumlah kejadian diasumsikan mengikuti Poisson distribution. Setelah itu ditetapkan forecast atau output yang diharapkan.
Hasil simulasi Monte Carlo adalah aggregate loss distribution. Berdasarkan distribusi kerugian hasil simulasi tersebut dilakukan perhitungan OpVaR, yang besarnya adalab Rp. 17.613.014.530,- (95th percentile) dari Rp. 31.151.154.671,- (99th percentile).

Banking crisis in Indonesia has indeed become a worthy lesson for bankers, including Bank Indonesia as monetary authority. The crisis has encouraged related parties to be more prudent and professional in the future. Supervision has not been done properly before banking crisis occurred and business risks have not been wholly considered.
Then, Bank Indonesia began to review and rebuild the banking industry in Indonesia. In the beginning of 2004, Bank Indonesia issued Indonesian Banking Architecture (API), a comprehensive program aimed to be guidance for bankers until 2010.
API introduces 8 pillars which must be accomplished by bankers. One of them states a need for risk management in banking industry. BE regulation No. 5/8/PBI/2003 regarding Risk Management Accomplishment for Banks, requesting banks to consider operational risk in the calculation of minimum capital requirement is expected to strengthen the control system in banking as a whole.
For the purpose of effective operational risk management, bank "X" must be able to identify operational risk and measure it: The identification of this risk is reported in Loss Event Data Base (LEDB).
To measure the risk, data of losses are gathered from LEDB, The data, consisting of loss amounts and frequency of losses are then used to establish severity of loss probability model and frequency of loss probability model. Both models are tested using Kolmogorov-Smimov Test and Chi-Square Test. Based on those tests, Exponential distribution and Poisson distribution are consecutively chosen as Severity of loss probability model and Frequency of loss probability model.
For the purpose of risk measurement, Monte Carlo simulation is done. Before doing this simulation, certain assumptions are established for each loss amount and each loss frequency.
The result of this simulation is aggregate loss distribution. Based on the distribution, Operational Value at Risk (OpVaR) is Rp. 17,613,014,530.00 (95th percentile) and Rp. 31,151,154,671.00 (99th percentile).

 File Digital: 1

Shelf
 T 18322a.pdf ::

Catatan : Menu Anggota

 Metadata

No. Panggil : T18322
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
Program Studi :
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik :
Catatan Bibliografi :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
T18322 15-20-005028016 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 107946