Metode Aditif Spline Kuadrat Terkecil Parsial (ASKTP) adalah suatu metode pengembangan dari metode Kuadrat Terkecil Parsial (MKTP). Metode ASKTP sangat cocok digunakan untuk mengatasi data yang bersifat non-linier dan memiliki sifat multikolinieritas diantara peubah-peubah prediktornya. Pada dasarnya, pendekatan dengan menggunakan metode ASKTP memiliki dua gagasan mendasar yaitu untuk menggunakan transformasi parameter prediktor dengan fungsi spline dan untuk membuat komponen-komponen dari ASKTP tidak saling berkorelasi (multikolinieritas) untuk menjaga sifat-sifat dari keliniearan komponen-komponen MKTP. Penelitian ini menyajikan perbanding antara metode ASKTP dan MKTP dalam penerapan di bidang ekonomi perikanan yaitu produksi ikan tuna
Efectivity of Additive Spline for Partial Least Square Method in Regression Model Estimation. Additive Spline of Partial Least Square method (ASPL) as one generalization of Partial Least Square (PLS) method. ASPLS method can be acommodation to non linear and multicollinearity case of predictor variables. As a principle, The ASPLS method approach is cahracterized by two idea. The first is to used parametric transformations of predictors by spline function; the second is to make ASPLS components mutually uncorrelated, to preserve properties of the linear PLS components. The performance of ASPLS compared with other PLS method is illustrated with the fisher economic application especially the tuna fish production.