Pengaruh dari rasio gap-diameter nosel terhadap nyala difusi pada medan aliran berlawanan telah diteliti secara eksperimental. Propana sebagai bahan bakar disuplai dari nosel bagian bawah dan udara sebagai oksidan disuplai dari nosel atas dengan diameter nosel yang sama, yang dilengkapi dengan honeycomb untuk membuat aliran udara yang seragam. Pada penelitian ini juga digunakan vortex generator untuk meningkatkan turbulensi sehigga dapat dicapai pencampuran reaktan yang optimal.
Dua parameter utama yang diatur dalam penelitian ini adalah parameter geometri (diameter dalam nosel, rasio gap-diameter nosel, letak vortex generator) dan dinamika fluida (fluks momentum bahan bakar dan udara). Data mentah yang didapatkan pada penelitian ini adalah perbedaan ketinggian pada manometer bahan bakar dan udara, yang selanjutnya dikonversi menjadi data kecepatan bahan bakar dan udara dengan menggunakan persamaan yang didapat dari proses kalibrasi.
Hasil eksperimen menunjukan bahwa limit stabilitas nyala akan naik dengan mengurangi rasio gap-diameter nosel pada berbagai posisi vortex generator pada nosel. Dan nyala paling stabil didapat pada L/d = 2.16 dan letak vortex generator pada jarak 2d dari ujung nosel, karena pada kondisi ini fluks momentum udara yang dibutuhkan paling tinggi untuk membuat nyala padam. Visualisasi nyala menunjukan bahwa mendekati kondisi padam, nyala api didominasi oleh nyala api biru. Hal ini mengindikasikan bahwa dengan debit aliran udara yang semakin tinggi, maka warna kuning karbon, lama kelamaan akan melemah. Dan dengan kecepatan yang tinggi akan terbentuk nyala api biru, dimana pada nilai kecepatan tertentu akan terjadi padam.
Effects of nozzle diameter-gap ratio on characteristics of counter flow diffusion flame have been investigated experimentally. Propane as a fuel gas was supplied upward through a nozzle, and air as oxidant was supplied downward through a similar nozzle, which was filled with honeycomb to produce a uniform velocity in the issuing air. This experiment, also used vortex generator to increases turbulence, so that optimal mixing of reactants can be achieved.Two main parameters that had been set up in this experiment were fluid dynamics (momentum flux of air and fuel) and geometry parameters (inner diameter of nozzle, ratio of gap-nozzle diameter, position of vortex generator). Raw data that had been got in this experiment were height difference (Δh) on fuel and air U-tube manometer. The data were then converted to air and fuel velocity, using equation which have been obtained by calibration process.Experiment result showed that stability limit increases with decreasing ratio of gap-nozzle diameter, with various distance of vortex generator at nozzle. And the most stable flame obtained at L/d = 2.16 and location of vortex generator at distance 2d from tip of nozzle, because at this condition, momentum flux of air that is needed to make extinction was the highest. Visualization showed that near extinction, flame was dominated by blue flame. That indicated, with higher flow rates of air the yellow carbon zone becomes weaker and with fast flows the flame becomes blue and then at a certain critical flow would be extinct.