Analisa multi atribut adalah salah satu metode statistik menggunakan lebih dari satu atribut untuk memprediksi properti fisik dari batuan. Tujuan analisa ini adalah adalah mencari hubungan antara log dengan data seismik. Hubungan ini digunakan untuk memprediksi Volome dari properti log pada semua volume seismik Pada penelitian ini analisa multiatribut diaplikasikan pada lapangan X daerah cekungan sumatera selatan dengan menggunakan 5 data sumur. Target dari penelitian ini adalah memprediksi penyebaran porositas di lapangan X. Sumursumur yang dipilih adalah sumur yang tersebar merata dan mewakili area yang akan diprediksi penyebaran porositasnya. Jumlah atribut yang digunakan di tentukan oleh proses step wise regression. Metode multiatribut yang linier transformasinya terdiri dari deret bobot yang diperoleh dari minimalisasi least square. Pada metoda non linier, neural network di gunakan dalam proses training dengan menggunakan atribut yang sudah ditentukan sebelumnya.Tipe neural network yang digunakan adalah PNN ( Probabilistic Neural Network ),tipe ini dipilih karena mempunyai hasil korelasi yang paling baik dibandingkan dengan tipe neural network yang lain. Untuk mengetahui tingkat kepercayaan dari transformasi multiatribut dilakukan proses crossvalidasi. Hasilnya multiatribut menunjukan korelasi sebesar 0.65 dan neural network 0.69.
Multi-attribute analysis is a statistic method using more than one attribute to predict physical properties of rocks. The aim of this analysis is to find a relationship between log and seismic data. The relationship is used for predicting volume of log property at all seismic volumes. In this study the multi-attribute analysis is applied to area X, which is a cavity region in South Sumatera, using five well data. The aim of the study is to predict porosity distribution at area X. The wells that were chosen were those that were spread evenly and represented areas where the distribution of porosity will be predicted. The quantity of attributes used is determined by a step wise regression process. A linear multiattribute method comprises of a series that is achieved by a minimised least square. In a non-linear method, neural network is used in the training process with predetermined attributes. The neural network type used was PNN (Probabilistic Neural Network ), this type was chosen because of the best correlation result. To verify the validity of the multi-attribute transformation, a crossvalidation was conducted. The result shows a 0.65 correlation and a 0.69 neural network.