Potensi air bawah tanah di wilayah Kampus UI Depok dapat diperkirakan berdasarkan data ketebalan akuifer, luas akuifer dan porositas lapisan akuifer di daerah tersebut. Informasi terkait geometri akuifer tersebut dapat diperoleh dengan melakukan reprocessing dan reinterpretation data pengukuran Resistivitas Wenner-Schlumberger yang pengukurannya telah dilakukan oleh peneliti sebelumnya. Untuk memperjelas model bawah permukaan dari data resistivity dilakukan pengukuran, pemrosesan dan pemodelan data gravitasi. Di samping itu, data gravitasi juga digunakan untuk memodelkan keberadaan batuan basement menggunakan software Grav2D.
Model struktur bawah permukaan dari data gravitasi kemudian diintegrasikan dengan data resistivity untuk merekonstruksi model hidrogeologi di wilayah Kampus UI Depok. Model hidrogeologi tersebut memperlihatkan struktur perlapisan dari atas ke bawah terdiri dari lapisan alluvium (nilai resistivity 10-100 ohm-meter dan nilai densitas 1,2 gr/cm3), lapisan pasir (nilai resistivitas < 10 ohm-meter dan nilai densitas 1,7 gr/cm3) dan lapisan perselingan batupasir dan batu gamping yang merupakan Formasi Bojongmanik (nilai resistivitas >100 ohm-meter dan nilai densitas 2,0 gr/cm3). Pemodelan data gravitasi memperlihatkan topografi puncak batuan basement berbentuk cekungan yang terisi oleh lapisan berdensitas rendah (1,7 gr/cm3) yang merupakan akifer. Kedalaman akuifer sendiri diperkirakan antara 20-120 m dengan ketebalan lapisan rata-rata adalah 80 m. Model hidrogeologi 3-dimensi dapat memperlihatkan dengan lebih jelas arah aliran fluida di wilayah Kampus UI Depok.
Berdasarkan studi ini, dapat diperkirakan volume akuifer di wilayah kampus UI Depok adalah 109.093.360 m3. Hasil studi ini juga dapat digunakan sebagai salah satu referensi dalam melakukan pengelolaan air bawah tanah di wilayah Kampus UI Depok.
Groundwater resources of the UI Campus area could be estimated based on aquifer geometry such as its thickness, area, and porosity. Information related to the aquifer could be collected by conducting reprocessing and reinterpretation of the Wenner-Schlumberger geoelectric data that has been carried out by previous researcher. To support subsurface geoelectrical model, it has been carried out the gravity measurement, processing and modelling. Furthermore, the gravity data was also utilised for modelling of basement formation using Grav2D software. The subsurface structure from the gravity modelling was then integrated with the resistivity data for reconstructing the hydrogeological model of the UI Campus area. The hydrogeological model shows stratified layers from up to bottom consist of alluvial layer (resistivity value 10-100 ohm-meter and density value 1,2 gr/cm3), sand layer (resistivity value < 10 ohm-meter and density 1,7 gr/cm3) and inter-change layer between sandstone and limestone known as Bojongmanik Formation (resistivity value >100 ohm-meter and density 2,0 gr/cm3). Modeling of gravity shows the topography of top basement in form of basin. The basin contains of low density layer (1,7 gr/cm3) which is aquifer. The depth of aquifer is estimated between 20-120 m with 80 m layer thickness in average. 3-D hydrogeology modeling can show fluid flow clearly in UI Campus area. According to this study, it can be estimated that the aquifer volume in UI Campus is 109.093.360 m3. The conclusion of this study can be use as a reference in subsurface aquifer management at UI Campus area.