ABSTRAKSistem pendeteksian wajah pada citra telah berkembang pesat sampai saat ini.
Tujuan dari deteksi wajah adalah untuk mengindentifikasi dan menempatkan
wajah manusia dengan pasisi. skala,oarientasi dan kondisi pencahayaan tertentu. Berbagai metode telah diajukan sampai saat ini. Salah satu pengembangan lebih lanjutnya adalah dengan menggunakan jaringan syaraf tiruan (neural network). Pada paper ini dibahas sistem deteksi wajah berdasarkan jaringan syaraf tiruan dengan metode training propagasi balik dengan momentum. Jaringan syaraf tiruan menguji setiap window dari citra, dan memmtukan apakah setiap window berisi wajah atau tidak. Setelah itu sistem menentukan window terbaik, yang akan disimpulkan sebagai wajah. Sistem inl dapat mendeteksi wajah frontal pada citra grayscale dengan latar belakang yang kompleks dan skala yang bervariasi. Agar dapat menguji citra masukan untuk ukuran wajah yang berbeda-beda, maka dilakukan metode piramida terhadap citra masukan.
Pada skripsi ini, ststem deteksi dengan jaringan syaraf tiruan diuji dengan perubahan pada parameter jumlah lapisan tersembunyi dan jumlah epoch yang dilakukan pada proses training. Sistem akan dianalisa kinerjanya berdasarkan lamanya waktu deteksi serta ketepatan hasil proses deteksi. Dari hasil pengujian didapatkan waktu deteksi sangat dipenganthi oleh ukuran citra, dan ketepatan proses deteksi sangat dipengaruhi oleh jumlah lapisan tersembunyi dan banyaknya epoch pada proses training, serta karakteristik dari citra masukan