Tugas akhir ini dibuat untuk merancang perangkat lunak yang dapat mengidentifikasi retina manusia melalui proses image processing dengan menggunakan Hidden Markov Model. Dalam pembuatan perangkat lunak indetifikasi ini terdiri atas dua bagian, yakni pembentukan database dan proses identifikasi itu sendiri. Pembentukan database akan menghasilkan codebook dan nilai probabilitas HMM. Identifikasi dilakukan dengan mengambil hasil scanning retina dari rumah sakit. Kemudian dilakukan proses normalisasi dan ekstraksi terhadap gambar retina yang didapat untuk memindai pola pembuluh darah kapiler pada retina.
Proses pengenalan retina dalam tugas akhir ini menggunakan Hidden Markov Model yang dilakukan melalui dua tahapan yaitu proses pelatihan data (training) yang dilakukan untuk melatih sistem pengenal yang bekerja agar dapat mengetahui setiap jenis pola pembuluh darah yang ada, serta proses pengenalan retina itu sendiri (recognition) yang digunakan untuk mengenali retina yang ingin diuji. Seluruh proses yang dilakukan dibuat menggunakan sebuah perangkat lunak untuk memecahkan masalah-masalah matematis. Dari hasil uji coba yang diperoleh, sistem ini dapat mengenali retina yang diuji dengan tingkat akurasi mencapai 100%.
This final project is created to design a software that can identify human retina through image processing using hidden markov model. This identification software consist of two part, that are database development and identification itself. The database development produce codebook and HMM probability value. Identification using retinal scanning from hospital. Then the images will be normalisated and extracted to separate retinal vessel. The identification process of retinal in this final assignment is using Hidden Markov Model that will be executed in 2 steps. The first step is data training process whose objective is to train the recognition system so it can recognize each kind of retinal vessel, and the second one is the recognition process of all retinal image. All processes are done by using a mathematic problem solution software. From the obtained test results, this system has the ability to recognize the tested retinal image with 100% accuracy.