UI - Disertasi Open :: Kembali

UI - Disertasi Open :: Kembali

Pengembangan sistem sensor chemical oxygen demand berbasis fotoelektrokatalisis menggunakan elektroda berlapis partikel titanium dioksida berukuran nano

Muh. Nurdin; Jarnuzi Gunlazuardi, promotor; Widayanti Wibowo, co-promotor; Endang Asijati Widijaningsih Ichsan, examiner; Buchari, examiner; Yoki Yulizar, examiner; Slamet, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009)

 Abstrak

Telah dilakukan penelitian pengembangan film titanium dioksida berukuran nano, yang dilekatkan pada substrat gelas berlapis ITO (Indium Tin Oxide). Film titanium dioksida berkuran nano ini digunakan untuk mengembangkan sistem sensor Chemical Oxygen Demand (COD) model baru. Film ini diperoleh dengan teknik proses clip-coating pada dispersi homogen TiO2, dilanjutkan dengan proses pemanasan hingga 450 °C. Dispersi homogen ini dibuat melalui dua metode yang berbeda, yaitu metode refluks hidrotermal dan pemanfaatan template triton-100. Film TiO2 yang diperoleh dikarakterisasi dengan Atomic Force Microscopy (AFM) dan X-Ray Diffraction (XRD). Analisis AFM memberikan informasi roughness dan ukuran partikel dari film, sedangkan XRD memberikan infomasi struktur dan ukuran kristal. Hasil menunjukkan bahwa film yang dipreparasi dengan metode refluks hidrotermal memberikan roughness 1,596 nm dan ukuran partikel 9,8 nm, sedangkan film yang dipreparasi dengan metode pemanfaatan template triton X-100 memberikan roughness 2,377 nm dan ukuran partikel 4,7 nm. Hasil analisis AFM dari kedua metode sintesis ini telah dikonfirmasi dengan XRD yang memberikan ukuran partikel masing- masing 9,64 nm dan 9,38 nm sebagai kristai anatase Film Ti02 yang dikembangkan ini menunjukkan aktifitas oksidasi fotokatalisis yang sangat baik. Dengan menggunakan film TiO2 berukuran nano yang dilekatkan di atas gelas berpenghantar listrik telah sukses dibuat dan diuji sebagai sensor COD. Sensor COD model baru yang dikembangkan ini berbasis fenomena fotoelektrokatalis, sedangkan konstruksi perangkatnya adalah sel elektrokimia dengan tiga elektroda. Lapisan tipis titanium dioksida di atas gelas-ITO difungsikan sebagai elektroda kerja yang dipasangkan dengan kawat Pt sebagai elektroda bantu, dan Ag/AgC| sebagai elektroda pembanding. Rangkaian sel elektrokimia dengan elelctroda kerja lilin 1702 ini pada saat permukaan TiO2 dikenai sinar ultra violet (~ 400 nm) memberikan respon initial photocurrent (arus-cahaya awal) yang unik dan merespon kondisi kimiawi tertentu dalam Iarutan contoh yang kontak dengan elektroda. Evaluasi lebih lanjut menunjukkan bahwa arus-cahaya awal dapat diamati dalam rentang waktu 10 detik dan besarnya proporsional dengan kandungan zat organik dalam larutan oontoh yang diuji. lntegrasi evolusi arus-cahaya awal ini versus waktu memberikan nilai muatan (Q = fidt; Q = muatan; i = arus; t= waktu) yang proporsional dengan konsentrasi mengikuti formulasi Faraday (Q = nFCV; n= jumlah elektron yang terlibat; F = konstanta Faraday; C = konsntrasi analit; dan V = volume). Arus-cahaya awal yang diamati ini pada dasarnya adalah akibat aliran elektron dari anoda ke katoda dalam sirkuit sel elektrokimia yang dirangkai, ketika elektronnya akan didisperse ke dalam larutan contoh melalui katoda dan akan ditangkap oleh akseptor elektron dalam air contoh (dominannya adalah oksigen). Pada prinsipnya integrasi arus-cahaya, terlepas apa jenis zat organiknya, akan proporsional dengan kandungan zat organik dalam air contoh, yang selanjutnya memberikan gambaran nyata kebutuhan oksigen kimiawi (COD) dalam air oontoh. Rangkaian sensor COD yang dibuat mampu menunjukkan nilai COD dengan benar pada rentang konsentrasi 10-150 mg/L dengan sensitivitas 3,9588 pCImglL, limit deteksi 1,9293 pC, presisi +-5,86 %.

Titanium dioxide (TiO2) nanoparticle film coated onto ITO (lndium Tin Oxide) glass has been developed and successfully applied for a new Chemical Oxygen Demand (COD) sensor. The TiO2 nanoparticles film were obtained by a dip-coating techniques in to a homogenous dispersion of TiO2, followed by a heat treatment up to 450 °C. The homogeneous dispersion was prepared by two different sol-gel methods, namely reflux hydrothermal and triton X-100 template methods. The obtained TIO2 films were characterized by Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) methods. The AFM analysis provide information on the roughness and particle size of the film, while XRD give information on the crystal structure and crystallite size. It was observed that the film prepared by reflux hydrothermal method have a roughness and particle size of 1.596 nm and 9.8 nm, while the film prepared by triton X-100 template method give roughness and particle size of 2.377 nm and 4.7 nm, respectively. The XRD analysis revealed that both films were predominated by anatase crystal structure and having -a crystallite size of 9.64 nm and 9.38 nm (predicted by Scherer equation). In addition the developed TiO2 film showed a good photocatalytic oxidation activities. By employing the above mentioned film, a new COD sensor based on photoelectrocatalytic principle has been constructed. The sensor system basically is an electrochemical cell which consist of three electrodes, i.e, working electrode (thin film TiO2), counter electrode (Pt wire) and reference electrode (Ag/AgCl). When the surface of working electrode (the TiO2 film) in electrochemical cell is illuminated by ultra violet light (~ 400 nm), a unique initial photocurrent was observed as a response to the present of organic chemical in sample solution that contact with electrodes. Furthermore, the carefully evaluation showed that the initial photocurrent (it can be observed in 10 seconds) is proportional to the organic chemical concentration in the sample. The integration of initial photocurrent versus time gives a charge value (Q = Iidt; Q = charge; I = photocurrent; t = elapsed time upon illumination), which is, again, proportional to the concentration of organic chemical (follows the Faradays Law, Q = nFCV; where n = number of electron transferred; F = Faraday constant; C = concentration of the compound; and V = volume). The initial photocurrent observed is representation of a flow electron from anode to cathode in electrochemical cell circuit, where the electron will be dispersed into sample solution through cathode and caught by electron acceptor in the water sample (dominated by oxygen). Hence the charge (Q) will be proportional to the organic concentration and can be correlated to the COD value in the water samples. The newly developed COD in the water samples. The newly developed COD sensor showed a practical linier range of 10-150 mg/L, sensitivity 3.9588 uC/mg/L, detection limit 1.9293 uC, and precision +-5,86 %.

 File Digital: 1

 Metadata

Jenis Koleksi : UI - Disertasi Open
No. Panggil : D1246
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
Bahasa : ind
Sumber Pengatalogan :
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xvi, 146 pages : Illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
D1246 07-17-707061099 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20277867
Cover