Saat ini peramalan beban listrik hanya menggunakan acuan data historis sebagai masukan pada metode peramalan beban. Berbagai jenis metode digunakan untuk menghasilkan peramalan beban yang akurat dan presisi dengan harapan daya yang disalurkan tepat ukuran sesuai dengan kebutuhan beban listrik konsumen.
Skripsi ini membahas teknik kombinasi metode permodelan Auto Regressive Integrated Moving Average (ARIMA) yang dikaitkan dengan metode regresi linear dari hubungan suhu dan beban listrik untuk menghasilkan metode peramalan yang lebih akurat dan presisi dari sekedar peramalan beban yang mengacu pada data historis saja. Berdasarkan hasil, terlihat bahwa MAPE kombinasi peramalan (4,19%) lebih baik dibanding menggunakan metode ARIMA (5,16%) dan Regresi Linear (5,28%) saja.
Nowadays electrical load forecasting uses historical data as a reference input on load forecasting method. Various types of this methods used to produce an accurate load forecasting and precision in the hope that appropriate resources are distributed according to the size of electrical load demand of consumers. This research will discuss combination technique of Auto Regressive Integrated Moving Average (ARIMA), which is associated with linear regression method from the relationship of temperature and electrical load to produce a more accurate and precise than a load forecasting based on historical data only. The final results show that combination technique gives MAPE 4,19%, better than ARIMA (5,16) and Linear Regression (5,28%).