ABSTRAKPengenalan pembicara telah digunakan secara luas dalam kehidupan sehari-hari yang telah menjadi cabang penting dari otentifikasi secara otomatisuntuk identitas pembicara. Ekstraksi fitur suara adalah salah satu masalah yang penting dalam pengenalan pembicara dan merepresentasikan suara. Mel-frequency cepstrum coefficients (MFCC) adalah salah satu fitur penting suara dalam proses pengenalan pembicara. Hasil dari ekstraksi fitur ini selanjutnya akan diklasifikasikan untuk melakukan proses pengenalan pembicara. Dalam skripsi ini akan digunakan Perceptron dan Fuzzy C-Means sebagai metode klasifikasi untuk proses pengenalan pembicara. Tingkat akurasi yang diperoleh dari kedua metode ini menghasilkan 90.00% dengan menggunakan Perceptron dan 72.50% dengan menggunakan Fuzzy C-Means untuk masalah identifikasi pembicara texr-independent.