Nanotubes mendapat perhatian yang sangat besar karena memiliki rasio luas permukaan yang tinggi, hal ini penting dalam aplikasinya sebagai elektroda Dye Sensitized Solar Cell (DSSC). Pada penelitian ini telah difabrikasi nanotubes TiO2 melalui teknik hidrotermal standar dimana serbuk nano TiO2 P25 Degussa dilarutkan pada larutan alkalin sodium hidroksida berkonsentrasi tinggi di dalam otoklaf tersegel. Untuk meningkatkan nanokristalinitas, dilakukan sebuah modifikasi dimana proses anil konvensional dikombinasikan dengan pasca hidrotermal. Detail struktur, morfologi dan kristalinitas diuji dengan XRD, spektroskopi Raman, SEM dan TEM, sedangkan sifat optik dari nanotubes diinvestigasi dengan spektroskopi UV-Vis.
Hasil investigasi menunjukkan bahwa dengan memberikan kombinasi anil konvensional dan pasca hidrotermal pada nanotubes, nanokristalinitas dapat ditingkatkan secara signifikan pada saat yang sama integritas struktur hollow tetap terjaga. Untuk sampel nanotube yang sebelumnya diberikan anil 150°C, ukuran kristalit anatase bertambah dari 6,93 sampai 7,82 nm setelah perlakuan pasca hidrotermal 80-150°C. Peningkatan nanokristalinitas lebih besar ditunjukkan ketika temperatur anil dinaikkan sampai 300°C kemudian dilanjutkan pasca hidrotermal yang sama, menghasilkan peningkatatan ukuran kristalit mulai dari 17,20 sampai 18,30 nm. Energi celah pita yang dihasilkan nanotubes berbanding terbalik dengan ukurun kristalit, dimana nilai terendah sebesar 3,19 eV didapatkan dari ukuran kristalit terbesar yaitu 18,30 nm. Nanotubes ini juga memberikan sirkuit tegangan terbuka pada DSSC hasil fabrikasi sebesar 108 mV.
TiO2 nanotubes have attracted extensive attention because it has a high surface area to volume ratio, which is important for its application as electrodes in dye sensitized solar cells (DSSC). In this study, TiO2 nanotubes have been fabricated through a standard hydrothermal technique where TiO2 P25 Degussa nanopowder was dissolved in highly concentrated alkaline solution of sodium hydroxide (NaOH) in a sealed autoclave. For nanocrystallinity improvement, a modification route was carried out where the conventional annealing process was combined with post-hdyrothermal treatment. The detail of the structure, morphology and crystallinity of the resulting nanotubes were examined by XRD, Raman spectroscopy, SEM and TEM, while the optical properties of nanotubes was investigated by UV-visible spectroscopy. The result of investigation showed that by subjecting the nanotubes to the combined treatment of annealing and post-hydrothermal, the nanocrystallinity of nanotubes can be enhanced significantly while the integrity of the hollow structure can be well-maintained. For the nanotube sample which has been previously annealed at 150°C, the crystallite size of anatase TiO2 in nanotubes increased from 6.93 to 7.82 nm after being subjected to post-hydrothermal treatment at 80 to 150°C. Further improvement in nanocrystallinity was obtained when the temperature of annealing process was raised up to 300°C prior to the same post-hydrothermal procedure, resulting in nanocrystallite size enhancement from 17.20 to 18.30 nm. The band gap energy of the resulting nanotubes is inversely proportional to the crystallite size of anatase phase where the lowest value of 3.19 eV was obtained from the nanotube sample with a biggest crystallite size of 18.30 nm. This nanotube also provided the highest open circuit votage in the fabricated DSSC of 108 mV.