Misalkan 𝐺𝐺(𝑝𝑝, 𝑞𝑞) adalah sebuah graf dengan 𝑝𝑝 = |𝑉𝑉(𝐺𝐺) | dan 𝑞𝑞 = |𝐸𝐸(𝐺𝐺) | masing-masing adalah banyaknya simpul dan busur dari 𝐺𝐺. Pelabelan total (a, d)-busur anti ajaib ((a, d)-PTBAA) dari sebuah graf 𝐺𝐺(𝑝𝑝, 𝑞𝑞) adalah sebuah pemetaan satu-satu f dari 𝑉𝑉(𝐺𝐺) ∪ 𝐸𝐸(𝐺𝐺) ke himpunan {1, 2,?, 𝑝𝑝 + 𝑞𝑞} sedemikian hingga himpunan bobot busur { 𝑓𝑓(𝑢𝑢) + 𝑓𝑓(𝑢𝑢𝑢𝑢) + 𝑓𝑓(𝑣𝑣) ∶ 𝑢𝑢𝑢𝑢 ∈ 𝐸𝐸(𝐺𝐺)} sama dengan {𝑎𝑎, 𝑎𝑎 + 𝑑𝑑, 𝑎𝑎 + 2𝑑𝑑,?, 𝑎𝑎 + (𝑞𝑞 − 1)𝑑𝑑 } untuk suatu bilangan bulat a > 0 dan d ≥ 0. Jika 𝑓𝑓(𝑉𝑉) = {1, 2,?, 𝑝𝑝} maka pelabelan f disebut pelabelan total super (a, d)-busur anti ajaib ((a, d)-PTSBAA), dan jika d = 0 maka pelabelan f disebut juga pelabelan total busur ajaib (PTBA). Pada tesis ini dibangun suatu konstruksi (a, d)-PTBAA pada gabungan m graf korona 𝐶𝐶𝑛𝑛 ⊚ 𝑃𝑃2 isomorfik untuk 𝑑𝑑 = 0 dan 𝑑𝑑 = 2, dan gabungan m graf prisma 𝐶𝐶𝑛𝑛 × 𝑃𝑃2 isomorfik untuk 𝑑𝑑 = 0, 𝑑𝑑 = 1 dan 𝑑𝑑 = 2.
Let 𝐺𝐺(𝑝𝑝, 𝑞𝑞) is a graph with 𝑝𝑝 = |𝑉𝑉(𝐺𝐺) | and 𝑞𝑞 = |𝐸𝐸(𝐺𝐺) | be respectively the number of vertices and the number of edges of 𝐺𝐺. An (a, d)-edge antimagic total labeling ((a, d)-EAT labeling) of a 𝐺𝐺(𝑝𝑝, 𝑞𝑞) graph is defined as a one-to-one mapping f from 𝑉𝑉(𝐺𝐺) ∪ 𝐸𝐸(𝐺𝐺) onto the set {1, 2,?, 𝑝𝑝 + 𝑞𝑞}, so that the set of weight { 𝑓𝑓(𝑢𝑢) + 𝑓𝑓(𝑢𝑢𝑢𝑢) + 𝑓𝑓(𝑣𝑣) ∶ 𝑢𝑢𝑢𝑢 ∈ 𝐸𝐸(𝐺𝐺)} is equal to {𝑎𝑎, 𝑎𝑎 + 𝑑𝑑, 𝑎𝑎 + 2𝑑𝑑, ?,𝑎𝑎+𝑞𝑞−1𝑑𝑑 for two integer a > 0 and d ≥ 0. If 𝑓𝑓𝑉𝑉=1, 2, ?, 𝑝𝑝 then f labeling is called super (a, d)-edge antimagic total labeling (super (a, d)-EAT labeling) and when d = 0 then f labeling is called edge magic total labeling (EMT labeling). In this thesis was constructed (a, d)-EAT labeling on union of isomorphic corona 𝐶𝐶𝑛𝑛 ⊚ 𝑃𝑃2 graphs for 𝑑𝑑 = 0 and 𝑑𝑑 = 2, and union of isomorphic prisms 𝐶𝐶𝑛𝑛 × 𝑃𝑃2 graphs for 𝑑𝑑 = 0, 𝑑𝑑 = 1 and 𝑑𝑑 = 2.