Kombinasi kontrol aktif tiupan dan hisapan yang diterapkan pada bagian belakang model mobil dapat meningkatkan tekanan statis hingga 50% dan mengurangi drag sampai 10% (Gerrop, D. & Odhental, H.J., 2000). Penerapan kontrol aktif tiupan pada model mobil (Ahmed body) menghasilkan penurunan drag hingga 6%, konsumsi bahan bakar menurun hingga 0.4 liter per‐100 kilometer saat kecepatan mobil 130 km/jam, dan menurut siklus NEDC, emisi berkurang hingga 2.3 gram per‐kilometer untuk median vehicle seperti Renault Megane (Kourta, A. & Gillieron, P., 2009).
Pada penelitian ini, kontrol aktif aliran berupa hisapan dan tiupan telah diaplikasikan pada bagian belakang van model (reversed Ahmed body) sebagai pendekatan bentuk mobil penumpang jenis Multi Purpose Vehicle (MPV). Penelitian dilakukan dengan pendekatan komputasi dan pendekatan eksperimental. Pada pendekatan komputasi digunakan software CFD Fluent 6.3 untuk mengetahui karakteristik medan aliran dan pengurangan drag aerodinamika pada model uji. Pada pendekatan eksperimen digunakan Particles Image Velocimetry dan load cell untuk memvalidasi hasil yang diperoleh melalui pendekatan komputasi.
Hasil yang didapatkan dalam penelitian, penempatan kontrol aktif aliran dapat mengurangi gaya drag aerodinamika pada model uji. Pengurangan drag aerodinamika terbaik adalah sebesar 21.91% yang terjadi dengan penerapan kontrol aktif hisapan saat perbandingan kecepatan upstream dengan kecepatan kontrol aktif aliran (USC/U0) = 0.03. Untuk kendaraan keluarga seperti Suzuki APV konsumsi bahan bakar menurun hingga 2 liter dan emisi berkurang hingga 15 gram per‐kilometer (Euro-IV) saat mobil melaju selama 10 jam dengan kecepatan rata-rata 60 km/jam.
The combination of active control by blowing and suction is applied to the rear side of the car model can increase the static pressure of up to 50% and reduce the drag till 10% (Gerrop & Odhental, 2000). Application of active control by blowing on the car model (Ahmed body) yield drag reduction up to 6%, fuel consumption dropped to 0.4 liters per 100 kilometers while car speed is 130 km/hour, and according to the NEDC cycle, the emission was reduced to 2.3 grams per kilometer for the median vehicle like Renault Megane (Kourta, A. & Gillieron, P., 2009).
In this study, flow active controls by suction and blowing was applied to the rear side of van model (reversed Ahmed body) as an approaches shape of MPV type of passenger car. The study conducted with computational and experimental approach. In the computational, CFD software Fluent 6.3 is used to discover the flow field characteristics and the aerodynamic drag reduction on the van model. In the experimental, Particles Image Velocimetry and load cells are used to validate the results obtained through computational approaches.
The results obtained that the placement of active flow control can reduce the aerodynamic drag force of test model and the best drag reduction obtained is of about 21.91% corresponding to the suction velocity USC/U0 = 0.03. For a passenger car like Suzuki APV, the fuel consumption decreases then by 2 liters and the emissions are reduced by 15 grams per kilometer (Euro-IV) as the car drove for 10 hours with an average speed of 60 km/h.