Dewasa ini, beban panas yang semakin besar akibat meningkatnya kecepatan operasi
dan densitas komponen pada suatu piranti elektronik menyebabkan perlunya sistem
pendingin baru yang lebih efisien atau mempunyai disipasi panas yang tinggi. Jet
sintetik potensial untuk digunakan sebagai pendingin komponen elektronik. Paper ini
melaporkan hasil dari studi eksperimental mengenai pengaruh Jarak Tumbukan
(impinging distance) pada performa pendinginan dengan tumbukan jet sintetik. Rasio
jarak aksial antara permukaan yang dipanaskan dan jet (L) terhadap diameter orifis jet
(d) berada pada jangkauan 0-3.3. Investigasi dilakukan dengan menggunakan
prototipe jet sintetik yang memiliki 16 lubang dengan diameter tiap lubang 3 mm dan
digerakkan oleh dua membran piezoelektrik 5 volt dengan eksitasi gelombang
sinusoidal. Dengan sistem aparatus tersebut diteliti karakteristik dari perpindahan
panas konvektif yang dihasilkan membran yang berosilasi. Hasil penelitian
menunjukkan adanya pengaruh ketinggian orifis yang signifikan terhadap laju
perpindahan panas yang didapat. Pada frekuensi eksitasi tinggi 160 Hz, kenaikkan
nilai perpindahan sebanding dengan kenaikkan rasio L/d hingga nilai L/d sebesar 2
kemudian turun hingga L/d sebesar 3,3.
Nowadays, A greater heat load due to miniaturization of electronic products causesthe need for a new cooling system that works more efficient and has a high thermalefficiency, Synthetic jet is potentially useful for cooling of electronic components. Inthis study, numerical simulations are performed to investigate the effect of variousthe distance between the orifice and the heated surface (L) on the ensuing syntheticjet flow. In this research the investigation was carried out by comtutational methodsusing the software CFD (Computational Fluid Dynamics), it will be seen thecharacteristics of convective heat transfer by moving the synthetic jet membrane. Acircular orifice synthetic jet is simulated assuming axisymmetric behaviour. Thequality of results is verified by time and convective heat transfer studies, and theresults are validated against existing experimental. In this research the model wassimulated to examine the distribution of heat flow on the walls using a mathematicalturbulen model k-w SST. Meshing order was elements Tet/Hybrid and type Tgrid.The boundary conditions were inlet velocity of 1.5 m/s, 2 m/s and 1 m/s, thefrequency of membrane vibration were 80 Hz, 120 Hz, 160 Hz and the amplitudewere 1 mm/s, 2 mm/s, 1.5 mm/s. The Reynolds number (Re) is in the range of 1421 –2843 based on average velocity, while the normalized axial distance varies between 0and 3.3. The movement of the piezo membrane is assumed of sinusoidal motionwhich moves up and down correspond to the suction and blowing phase respectively.The results showed the significant influence of L/D Ratio and sinusoidal wavefrequencies to the heat transfer rate that obtained. At small axial distance (L),recirculation of fluid occurs due to confinement, owing to the presence of the orificeplate. However, at large axial distances, the jet velocity reduces due to entrainment ofstill ambient air, which again reduces the heat transfer coefficient.