Stent mampu luruh alami sudah menjadi salah satu metode alternatif yang sedang banyak dikembangkan dalam aplikasinya untuk stent koroner. Besi murni dan paduan magnesium merupakan material stent mampu luruh alami yang populer saat ini. Bagaimanapun dalam lingkungan tubuh manusia, laju peluruhan besi murni terlalu lambat dan paduan magnesium terlalu cepat. Paduan Fe-Mn-C diproduksi dengan metode metalurgi serbuk diharapkan menjadi material alternatif dengan laju korosi diantara besi murni dan paduan magnesium. Besi, ferromangan, dan karbon dalam bentuk serbuk manjadi bahan baku paduan ini. Pemaduan mekanik secara sederhana dan variasi komposisi mangan (25% dan 35%) dilakukan pada paduan Fe-Mn-C ini. Proses sinter dilakukan dengan aliran Ar pada temperatur 1100°C.
Karakterisasi terhadap porositas, mikrostruktur, kekerasan, laju korosi, dan biokompatibilitas dilakukan pada sampel hasil sinter. Laju korosi dilakukan pada cairan simulasi tubuh larutan Hank’s dan ringer laktat. Pengujian biokompatibilitas dengan metode sitotoksisitas in vitro dilakukan dengan sel osteoblas MG 63. Hasil uji laju korosi memperlihatkan paduan Fe-Mn-C berada diantara laju korosi besi murni dan paduan magnesium. Pada hasil sitotoksisitas paduan Fe-Mn-C memperlihatkan viabilitas kehidupan sel MG 63 yang tinggi. Pada akhirnya dapat disimpulkan paduan Fe-Mn-C dapat dikembangkan lebih lanjut untuk aplikasi biomaterial mampu luruh alami.
Biodegradable stents have become one of the alternative method which being widely developed for corronary stent application. Pure iron and magnesium alloy are biodegradable stent materials which popular at this time. However, magnesium alloy degrades too fast and pure iron is too slow, in human body environment. Fe-Mn-C alloy produced by powder metallurgy method is expected to be an alternative material with range of degradation rate between pure iron and magnesium alloy. Iron, ferromanganese, and carbon in the form of powder as raw material for this alloy. Simple mechanical alloying and compositional variations of manganese (25% and 35%) performed for Fe-Mn-C alloy. Sinter process is done with Ar inert flow gas at a temperature of 1100°C. Porosity, microstructure, hardness, degradation rate, and biocompatibility characterization performed on samples of sinter. Degradation rate performed in simulated body fluid of Hank’s and ringer lactate. Biocompatibility with in vitro cytotoxicity methods performed by MG 63 osteoblast cells. The results show the degradation rate of Fe-Mn-C alloy is between pure iron and magnesium alloys. The cytotoxicity test show the high metabolic activities of MG 63 cells. In conclusion, Fe-Mn-C alloy are considered for further development of biodegradable materials.