Sistem tata udara presisi adalah sistem yang mengatur lingkungan udara yang cocok untuk peralatan ICT dalam kebinet ruang Datacenter yang khusus melayani penggunaan yang sangat penting dan kritis. Untuk mencegah kerusakan pada peralatan ICT dan pada media penyimpan akibat thermal shutdown, conductive anodic failures, hygroscopic dust failures, corrosion, dan short circuit, sistem tata udara presisi harus dapat mengendalikan temperatur dan kelembaban didalam kabinet, serta mampu beradaptasi terhadap perubahan temperatur akibat perubahan beban panas peralatan IT.
Permasalahan yang dihadapi adalah bahwa sistem ini memiliki karakterisitik kompleks dan nonlinier yang sangat kuat yang sangat sukar dikendalikan oleh teknik kendali lanjut linier. Di dalam dissertasi ini diusulkan teknik kendali prediktif nonlinier baru yang disebut sebagai sistem kendali prediktif multi model berbasis supervisi untuk mengendalikan temperatur keluaran sistem tata udara presisi. Algoritma kendali tersusun dari tiga layer, yaitu layer optimasi kendali real-time untuk mengikuti perubahan sinyal acuan, layer adaptasi untuk menyesuaikan model PAC terhadap variasi beban panas, dan layer supervisi untuk menjamin kestabilan.
Sistem PAC memiliki rancangan struktur baru yaitu penambahan kondenser sekunder yang berfungsi sebagai reheater untuk menurunkan RH keluaran evaporator. Prinsip kerja dan siklus kompresi uap sistem PAC diilustrasikan dalam psychrometric chart dan diagram enthalpi-tekanan. Model nonlinier sistem PAC diturunkan menggunakan teori pemodelan fisik berdasarkan prinsip konservasi energi dan kesetimbangan massa, dan kemudian dilinierisasi di sekitar titik kerja untuk mengembangkan model ruang keadaan orde-8 yang cocok untuk perancangan pengendali multivariabel. Kualitas model terlinierisasi dianalisa dari aspek respons transien, sifat controllability dan observability, dan interaksi antar variabel masukan-keluaran. Sebuah model nonlinier yang disebut sebagai multi model linier diusulkan dimana matriks parameter model diestimasi oleh algoritma identifikasi N4SID menggunakan himpunan data eksperimen masukankeluaran.
Kontribusi utama dari dissertasi ini adalah multi model linier dapat diestimasi secara bertingkat dimana tiap tingkat identifikasi mempertahankan hubungan linier antar matriks parameter. Konsep model bertingkat ini juga mempermudah perancangan pengendali prediktif multi model dengan tetap mempertahankan optimasi kendali sebagai permasalahan quadratic programming. Mekanisme adaptasi pengendali prediktif dibentuk dengan memperbaharui model prediksi menggunakan algoritma N4SID rekursif.
Untuk menjamin kestabilan sistem PAC dan menghindari fenomena bursting, algoritma deteksi ketidakcukupan eksitasi sinyal masukan dan monitoring sinyal diturunkan dalam persamaan rekursif, sehingga penambahan waktu komputasi tidak signifikan. Komputasi rekursif pada layer supervisi menjadi kontribusi terakhir. Kualitas model nonlinier hasil pemodelan fisik dan identifikasi bertingkat divalidasi melalui simulasi dan uji eksperimen baik secara kualitatif maupun kuantitatif. Sebagai indikator kinerja validasi model digunakan kriteria loss function dan kriteria final prediction error.
Dari hasil uji simulasi dan eksperimen, hanya multi model linier menunjukkan kinerja model yang baik dari aspek kemampuan meniru karakteristik nonlinear sistem PAC dan nilai parameter analisa model yang baik, sehingga model ini cocok dipakai pada perancangan pengendali. Algoritma kendali yang diusulkan juga diverifikasi baik dalam kasus uji simulasi dan eksperimen, dan menunjukkan kemampuannya untuk menjejaki perubahan sinyal acuan.
Precision air conditioning (PAC) is a system that regulate air environment suitable for ICT equipments inside the cabinet of Datacenter room which serves very important and critical works. In order to overcome damage on ICT equipments and media storage due to thermal shutdown, conductive anodic failures, hygroscopic dust failures, corrosion, and short circuit, the PAC should be able to control the temperature and relative humidity inside the cabinet, and also able to adapt againts temperature change caused by interaction with humans, change of environment temperature, and change of heat load of ICT equipments. The problem encountered is that the PAC shows complex and highly nonlinear dynamics that is usually very difficult to control with linear advanced control systems. In this Dissertation, a new nonlinear predictive control called a supervision-based multi model predictive control to regulate the temperature outlet of PAC is presented. The proposed control algorithm consists of three layers, they are the optimization of real-time control layer for tracking the given set points, the adaptation layer for adjusting the PAC model againts variation of heat load, and the supervision layer for guarantee the closed loop stability. The work mechanism and vapourcompression cycle for the PAC system are illustrated using psychrometric chart and enthalpypressure diagram. A nonlinear model is derived using physical modeling theory based on the conservation of mass and energy balance principles, and then linearized about operating points for developing a 8th order state space model suited for multivariable control design. The quality of linearized model is analyzed in terms of response transient, controllability, observability, and interaction between input-output variables. A nonlinear model called multi linear model is proposed where the model parameter matrices are estimated by N4SID algorithm using a set of input-output data. The main contribution of this dissertation is that the multi linear model can be estimated using multi-stage subspace identification algorithm, where the relationship between model parameter matrices is still maintained linear. The concept of multi level models also simplify the design of multi model predictive controller retaining control optimization as a quadratic programming problem. The adaptation mechanism is performed by updating the prediction model using recursive N4SID algorithm. In order to guarantee system stability and to overcome bursting phenomena, a detection algorithm of less excitation signal and signals monitoring are derived in recursive forms, so that the control algorithm needs no significant additional computing power. The recursive computation in supervision layer is the last contribution for this dissertation. Quality of nonlinear model from physical modeling and system identification is validated through simulation and experimental test both qualitatively and quantitatively. Loss function and final prediction error are choosed as a performance criteria of model validation. From the simulation and experimental results, only the multi linear model shows good modeling performance in terms of ability to mimic the nonlinear behavior of PAC system and good parameter value of model analysis. The proposed control algorithm is also verified in case of simulation and experimental test showing its ability to track the set-point change.