UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Regresi isotonik mulus = Smooth isotonic regression

Imanuel Manginsela Rustijono; Yekti Widyaningsih, supervisor; Dian Lestari, supervisor; Siti Nurrohmah, examiner; Saskya Mary Soemartojo, examiner; Fevi Novkaniza, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014)

 Abstrak

Analisis regresi merupakan salah satu metode yang paling sering digunakan dalam menganalisis data. Pada aplikasinya, seringkali proses analisis dihadapkan dengan masalah keterurutan. Pada tahun 1972 Richard E. Barlow memperkenalkan metode Regresi Isotonik sebagai salah satu metode analisis data yang mempertimbangkan keterurutan. Metode regresi ini digunakan ketika penelitian berhadapan dengan asumsi bahwa ketika nilai variabel independen bertambah, maka nilai variabel dependen juga bertambah. Dengan adanya asumsi ini, maka digunakan fungsi isotonik, yaitu fungsi yang mempertahankan keterurutan naik, untuk menemukan model yang sesuai.
Tujuan dari metode Regresi Isotonik adalah menemukan fungsi g* yang merupakan anggota kelas fungsi isotonik dan memiliki jarak kuadrat minimum terhadap fungsi yang diperoleh dari data pengamatan. Dengan menggunakan prinsip dasar Cumulative Sum Diagram dan Greatest Convex Minorant, g* bisa diperoleh, dimana g* adalah fungsi tangga. Seiring berkembangnya teori pendekatan, interpolasi polinomial juga semakin berkembang dan bisa digunakan untuk smoothing fungsi tangga yang diperoleh dari metode Regresi Isotonik. Fungsi hasil smoothing ini dinamakan Smooth Isotonic Regression. Dalam skripsi ini akan dibahas bagaimana cara memodelkan hubungan antara dua variabel menggunakan metode Regresi Isotonik dan Smooth Isotonic Regression.

Regression analysis is a method in statistics that often used to analyze data. On the application in real world problem, the analysis process is often confronted an order restriction. In 1972, Richard E. Barlow introduced a method named Isotonic Regression as a method that concerns on the order restriction. This method is used when the analysis confront an assumption that the dependent variable value will increase as the independent variable value increase. With this assumption, the regression model is constructed from isotonic function that preserves the order of the variable.
The objective of this method is to find a function g* that has minimum distance to the observation data function and g* is element of class of isotonic function . Using the Cumulative Sum Diagram and Greatest Convex Minorant, appropriate g* can be found and g* is a step function. Polynomial interpolation as the development of approximation theory can be used as a smoothing function to the step function from isotonic regression. This smooth function named Smooth Isotonic Regression. In this paper, these two methods will be explained.

 File Digital: 1

Shelf
 S55716-Imanuel Manginsela Rustijono.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S55716
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xv, 40 pages : illustration ; 28 cm
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S55716 14-18-283765740 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20386605
Cover