UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pemodelan bayesian berhierarki untuk membuat disease risk map pada masalah spatial misalignment = Bayesian hierarchical modelling for constructing disease risk map in spatial misalignment poblem

Evi Riyanti Yasir; Yekti Widyaningsih, supervisor; Dian Lestari, examiner; Saskya Mary Soemartojo, examiner; Bevina Desjwiandra Handari, examiner; Siti Nurrohmah, examiner (Universitas Indonesia, 2014)

 Abstrak

Dalam dunia epidemiologi, dibutuhkan suatu pemetaan untuk menggambarkan distribusi penyakit pada populasi, yang disebut dengan disease risk map. Mapping tersebut dibuat berdasarkan nilai SMR (Standardized Morbidity or Mortality Ratio) yang diperoleh dari informasi mengenai banyaknya penderita suatu penyakit di daerah tertentu. Semakin kecil skala disease risk map tersebut, maka semakin tepat sasaran untuk melakukan pencegahan terhadap suatu penyakit. Namun, masalah yang sering dijumpai adalah data banyaknya penderita penyakit hanya tersedia pada lingkup area yang besar. Sedangkan data mengenai penyebab terjangkitnya penyakit tersebut, tersedia dalam skala area yang lebih kecil. Ketidakseimbangan nilai-nilai variabel inilah yang disebut sebagai spatial misalignment. Sehingga digunakan pemodelan Bayesian berhierarki yang memanfaatkan fungsi likelihood dari variabel respon yang tersedia pada skala area lebih besar dan nilai-nilai kovariat yang tersedia pada area yang lebih kecil. Kemudian, dari distribusi posterior yang diperoleh, digunakan metode Markov Chain Monte Carlo (MCMC) untuk mencari nilai taksiran parameter. Berdasarkan persamaan linier dari log SMR pada model, diperoleh nilai estimasi SMR untuk skala area lebih kecil. Pemodelan Bayesian berhierarki ini diterapkan untuk membuat disease risk map skala area puskesmas Kota Depok pada kasus kelahiran bayi mati.

In epidemiology, mapping is needed to describe the distribution of disease in an area or among population, which is called disease risk map. The construction of disease risk map is based on the value of SMR (Standardized Morbidity or Mortality Ratio), that is obtained from the information about the number diagnosed of a disease in an area. If the scale of disease risk map is smaller, the prevention of the disease is more effective. However, the data about the number of cases of a disease is available from a larger scale area. On the other hand, data about the causes or factors of that disease is available at the smaller scale area. Such unbalance sources of those variables is called spatial misalignment. So that, it is needed to apply Bayesian hierarchical modeling that uses the likelihood of response variable which is available at the larger scale area and the value of covariates which is available at the smaller scale area. Then, by using the Markov Chain Monte Carlo (MCMC) method which build samples from the posterior distribution, the value of estimated parameters are obtained. Furthermore, based on the linear model for SMR, the estimated SMRs for the smaller scale area are obtained. To give an illustration, Bayesian hierarchical modeling is applied to construct the disease risk map at clinic scale area for stillbirths cases in Depok.

 File Digital: 1

Shelf
 S54803-Evi Riyanti Yasir.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S54803
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Universitas Indonesia, 2014
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xii, 58 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S54803 14-18-570511774 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20386768
Cover