[
ABSTRAKInterpretasi merupakan proses yang penting dalam penentuan posisi dan
geometri reservoar. Akan tetapi proses interpretasi dalam PSTM masih memiliki
keterbatasan imaging dan mengakibatkan kesalahan dalam interpretasi. Terlebih untuk
lapangan yang memiliki variasi kecepatan secara lateral. Variasi kecepatan secara lateral
akan mengakibatkan pembelokan sinar gelombang yang mengakibatkan perekaman
gelombang tidak hiperbola.
Pencitraan bawah permukaan ketika terd apat adanya variasi kecepatan lateral
yang besar sehingga menyebabkan terjadinya pembelokan sinar pada batas lapisan,
nonhyperbolic moveout, dan struktur lapisan yang kompleks harus dilakukan dengan
prestack depth migration (PSDM). PSDM merupakan teknik migrasi sebelum stacking
dalam kawasan kedalaman. Dibandingkan PSTM, PSDM lebih memperhatikan travel
time.
Untuk melakukan PSDM dibutuhkan geometri reflektor dan model kecepatan
interval yang mendekati model bumi sebenarnya. Model kecepatan interval yang
digunakan masih diasumsikan isotropi sehingga hasil seismik yang dihasilkan belum
akurat secara posisi ataupun image. Oleh karena itu dibutuhkan parameter anisotropi
untuk memperbaiki masalah tersebut.
Jenis anisotropi yang akan digunakan adalah Vertical Transverse Isotropy(VTI)
dimana sumbu simetri anisotopi berarah verikal. Parameter anisotopi yang digunakan
adalah ε dan δ. Delta (δ) adalah parameter anisotropi gelombang P pada near vertical
sedangkan epsilon merupakan parameter anisotropi gelombang P pada near horizontal.
Secara praktis, delta (δ) berhubungan dengan level posisi reflekktor sedangkan epsilon
lebih berhubungan dengan koreksi far offset yaitu efek hockeystick
Dengan melakukan PSDM anisotropi, pemodelan secara vertical dan horizontal
akan lebih akurat sehingga diharapkan dapat mengurangi kesalahan dalam interpretasi.
ABSTRACTSeismic interpretation is a crusial step in reservoar position and geometri
determining. But then interpretation process in PSTM data which has limited on imaging
will appear interpretation pitfalls. Moreover for field wich has strong lateral velocity
variation. Strong lateral velocity variation will bend the ray which will create
unhiperbolic moveout.
Imaging subsurface in existence with strong lateral velocity variation causes ray
bending at layer boundary, non-hyperbolic moveout, and complex overburden structures
needs prestack depth migration (PSDM). PSDM is before stacking migration technique in
depth domain. As compared to PSTM, PSDM more does honour to travel time.
PSDM needs reflector geometry and interval velocity model which resemble to the
sub surface model. The interval velocity model which is used still assumes isotropy
condition. It makes imaging is not precise both in position and imaging. Therefore,
anisotrophy media assuming is required to solve those issues.
Vertical Tranverse Isotropy (VTI) is anisptrophicallly medium approximation with
vertical symmetry axis. ε and δ are anisotropic Thomsen parameter which will be
applied in this research. Delta (δ) is near vertical P wave anisotropy parameter whereas
epsilon (ε) is near horizontal P wave anisotropy parameter. Practically, delta (δ) related
with reflector position (well seismic tie) whereas epsilon related with far offset correction
called hockeystick effect.
Application of anisotropic PSDM with the real data shows significant improvement
in lateral and vertical positioning that approaches true model, if compare to isotropic
PSDM. The image itself is better than the isotropic PSDM that shows strong and continue
reflectors amplitudes;Seismic interpretation is a crusial step in reservoar position and geometri
determining. But then interpretation process in PSTM data which has limited on imaging
will appear interpretation pitfalls. Moreover for field wich has strong lateral velocity
variation. Strong lateral velocity variation will bend the ray which will create
unhiperbolic moveout.
Imaging subsurface in existence with strong lateral velocity variation causes ray
bending at layer boundary, non-hyperbolic moveout, and complex overburden structures
needs prestack depth migration (PSDM). PSDM is before stacking migration technique in
depth domain. As compared to PSTM, PSDM more does honour to travel time.
PSDM needs reflector geometry and interval velocity model which resemble to the
sub surface model. The interval velocity model which is used still assumes isotropy
condition. It makes imaging is not precise both in position and imaging. Therefore,
anisotrophy media assuming is required to solve those issues.
Vertical Tranverse Isotropy (VTI) is anisptrophicallly medium approximation with
vertical symmetry axis. ε and δ are anisotropic Thomsen parameter which will be
applied in this research. Delta (δ) is near vertical P wave anisotropy parameter whereas
epsilon (ε) is near horizontal P wave anisotropy parameter. Practically, delta (δ) related
with reflector position (well seismic tie) whereas epsilon related with far offset correction
called hockeystick effect.
Application of anisotropic PSDM with the real data shows significant improvement
in lateral and vertical positioning that approaches true model, if compare to isotropic
PSDM. The image itself is better than the isotropic PSDM that shows strong and continue
reflectors amplitudes, Seismic interpretation is a crusial step in reservoar position and geometri
determining. But then interpretation process in PSTM data which has limited on imaging
will appear interpretation pitfalls. Moreover for field wich has strong lateral velocity
variation. Strong lateral velocity variation will bend the ray which will create
unhiperbolic moveout.
Imaging subsurface in existence with strong lateral velocity variation causes ray
bending at layer boundary, non-hyperbolic moveout, and complex overburden structures
needs prestack depth migration (PSDM). PSDM is before stacking migration technique in
depth domain. As compared to PSTM, PSDM more does honour to travel time.
PSDM needs reflector geometry and interval velocity model which resemble to the
sub surface model. The interval velocity model which is used still assumes isotropy
condition. It makes imaging is not precise both in position and imaging. Therefore,
anisotrophy media assuming is required to solve those issues.
Vertical Tranverse Isotropy (VTI) is anisptrophicallly medium approximation with
vertical symmetry axis. ε and δ are anisotropic Thomsen parameter which will be
applied in this research. Delta (δ) is near vertical P wave anisotropy parameter whereas
epsilon (ε) is near horizontal P wave anisotropy parameter. Practically, delta (δ) related
with reflector position (well seismic tie) whereas epsilon related with far offset correction
called hockeystick effect.
Application of anisotropic PSDM with the real data shows significant improvement
in lateral and vertical positioning that approaches true model, if compare to isotropic
PSDM. The image itself is better than the isotropic PSDM that shows strong and continue
reflectors amplitudes]