UI - Disertasi Membership :: Kembali

UI - Disertasi Membership :: Kembali

Pengembangan sistem pendinginan komponen mikroelektronik hemat energi melalui pengelolaan aliran termal berbasis teknologi jet sintetik = Development of microelectronics cooling system components energy efficient through flow thermal management technology based synthetic jet

Damora Rhakasywi; Harinaldi, promotor (Fakultas Teknik Universitas Indonesia, 2014)

 Abstrak

[ABSTRAK
Perkembangan industri elektronik untuk produk berkinerja tinggi yang
ditandai dengan munculnya piranti elektronika berukuran minimalis serta
menggunakan daya yang rendah memerlukan sebuah sistem pendinginan yang
handal dan efisien sehingga mampu beroperasi secara optimum. Pada penelitian
ini teknologi yang digunakan untuk mendinginkan komponen piranti elektronika
tersebut menggunakan jet sintetik yang memanfaatkan gerakan membran secara
kontinyu dengan menghasilkan cincin vortex untuk mempercepat proses
perpindahan panas. Penelitian yang dilakukan pada study ini bertujuan untuk
mencari nilai frekuensi, jenis gelombang eksitasi, serta bentuk orifis jet sintetik
yang menghasilkan performa pendinginan yang baik untuk model jet sintetik
impinging, mencari pengaruh jarak tumbukan (impact) jet sintetik impinging
terhadap laju perpindahan panas konveksi untuk proses pendinginan, mencari
model cavity jet sintetik impinging dan jet sintetik cross flow yang memiliki
kehandalan dalam proses pendinginan. Penelitian ini dikerjakan menggunakan
pendekatan komputasional dan eksperimental. Pada pendekatan komputasional
digunakan software CFD (computational fluid dynamics) yang mendefinisikan
kondisi batas jet sintetik dengan asumsi dinding bergerak (moving wall) dan
model turbulensi k-omega SST (Shear Stress Transport). Kemudian model uji
eksperimental menggunakan model jet sintetik tipe impinging dan model jet
sintetik tipe cross flow. Model-model tersebut memiliki perbedaan dalam hal arah
aliran jet sintetik terhadap media yang akan didinginkan berupa heatsink. Modus
eksitasi yang dipergunakan untuk menghasilkan aliran jet sintetik tersebut
menggunakan sinyal listrik berupa gelombang sinusoidal, square dan triangular
dengan variasi frekuensi 80 Hz, 120 Hz dan 160 Hz. Sinyal listrik tersebut
dihasilkan oleh sweep function generator. Hasil yang diperoleh dari kajian
komputasional dan eksperimental tersebut memberikan informasi bahwa jet
sintetik mampu memberikan efek pendinginan pada objek yang akan didinginkan.
Parameter dari variasi frekuensi eksitasi jet sintetik dan arah aliran jet sintetik
memberikan efek yang beragam dalam hal pendinginan. Dari hasil penelitian yang
dilakukan tersebut diperoleh modus eksitasi yang paling baik menggunakan
gelombang eksitasi square 120 Hz untuk model jet sintetik impinging kemudian
kombinasi gelombang eksitasi sinusoidal 120 Hz dan square 80 Hz memberikan
efek pendinginan yang paling optimum untuk tipe jet sintetik cross flow.
Konsumsi energi yang dibutuhkan oleh jet sintetik sebanyak 1,78 joule untuk
menurunkan temperatur dari 53 oC menjadi 48,2 oC sedangkan kipas
menghabiskan konsumsi energi sebanyak 142,2 joule untuk dapat menurunkan
temperatur dari 53 oC menjadi 48,2 oC.

ABSTRAK
The development of the electronics industry for high performance products are
characterized by the emergence of electronic devices minimalist size and low
power required to use a cooling system that is reliable and efficient thus able to
operate at its optimum. In this study, the technology used to cool electronic
devices such components using synthetic jet which utilizes a continuous
membrane movement by generating vortek ring to accelerate the process of heat
transfer. Research conducted in this study aimed to explore the value of
frequency, type of wave excitation, as well as the shape of the synthetic jet orifice
produces good cooling performance for the model synthetic jet impinging,
collision distance for influence synthetic jet impinging on the rate of convection
heat transfer to the cooling process, looking for synthetic jet impinging cavity
models and synthetic jet cross flow which has reliability in the process of cooling.
The study is done using the method of using computational and experimental
approaches. In the computational approach used CFD (computational fluid
dynamics) software which defines the boundary conditions assuming a synthetic
jet moving wall model with k-omega SST (Shear Stress Transport) turbulence.
Then test the model using the experimental model of type impinging synthetic jet
and model of synthetic jet cross flow type. The models differ in terms of synthetic
jet flow direction of the media that will be cooled heatsink. Mode excitation is
used to produce the synthetic jet flow using electrical signals in the form of waves
sinusoidal, square dan triangular with variations in frequency of 80 hz, 120 hz
and 160 hz. The electrical signals generated from the tool named sweep function
generator. Results obtained from the computational and experimental information
that synthetic jets can provide a cooling effect on the object to be cooled.
Parameters of synthetic jet excitation frequency variation and direction of flow of
synthetic jet placement varied effects in terms of cooling. From the results of the
research conducted most excitation modes obtained using either 120 hz square
wave excitation for the type of impinging synthetic jet models then the
combination of 120 hz sinusoidal excitation wave and 80 hz square provide the
most optimum cooling effect for condition type cross flow model of synthetic jet.
Energy consumption required by the synthetic jet 1.78 joules to lower the
temperature of 53 oC - 48.2 oC while fans spend energy consumption 142.2 joule
to be able to lower the temperature of 53 oC-48.2 oC., The development of the electronics industry for high performance products are
characterized by the emergence of electronic devices minimalist size and low
power required to use a cooling system that is reliable and efficient thus able to
operate at its optimum. In this study, the technology used to cool electronic
devices such components using synthetic jet which utilizes a continuous
membrane movement by generating vortek ring to accelerate the process of heat
transfer. Research conducted in this study aimed to explore the value of
frequency, type of wave excitation, as well as the shape of the synthetic jet orifice
produces good cooling performance for the model synthetic jet impinging,
collision distance for influence synthetic jet impinging on the rate of convection
heat transfer to the cooling process, looking for synthetic jet impinging cavity
models and synthetic jet cross flow which has reliability in the process of cooling.
The study is done using the method of using computational and experimental
approaches. In the computational approach used CFD (computational fluid
dynamics) software which defines the boundary conditions assuming a synthetic
jet moving wall model with k-omega SST (Shear Stress Transport) turbulence.
Then test the model using the experimental model of type impinging synthetic jet
and model of synthetic jet cross flow type. The models differ in terms of synthetic
jet flow direction of the media that will be cooled heatsink. Mode excitation is
used to produce the synthetic jet flow using electrical signals in the form of waves
sinusoidal, square dan triangular with variations in frequency of 80 hz, 120 hz
and 160 hz. The electrical signals generated from the tool named sweep function
generator. Results obtained from the computational and experimental information
that synthetic jets can provide a cooling effect on the object to be cooled.
Parameters of synthetic jet excitation frequency variation and direction of flow of
synthetic jet placement varied effects in terms of cooling. From the results of the
research conducted most excitation modes obtained using either 120 hz square
wave excitation for the type of impinging synthetic jet models then the
combination of 120 hz sinusoidal excitation wave and 80 hz square provide the
most optimum cooling effect for condition type cross flow model of synthetic jet.
Energy consumption required by the synthetic jet 1.78 joules to lower the
temperature of 53 oC - 48.2 oC while fans spend energy consumption 142.2 joule
to be able to lower the temperature of 53 oC-48.2 oC.]

 File Digital: 1

Shelf
 D1899-Damora Rhakasywi.pdf :: Unduh

 Metadata

Jenis Koleksi : UI - Disertasi Membership
No. Panggil : D1899
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2014
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xxiv, 223 pages ; 28 cm. + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
D1899 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20390481
Cover