Posisi geografis Indonesia yang terletak di antara 2 benua dan samudra sesungguhnya selain strategis, juga menyimpan risiko besar mengalami berbagai bencana. Perubahan iklim dan kerawanan lokasinya yang dikelilingi lempeng dan patahan-patahan geologis di kerak Bumi mengakibatkan Indonesia menjadi wilayah rawan gempa Bumi dan deformasi tanah/longsor. Selain itu kebakaran hutan, banjir, pembalakan liar, degradasi lahan pertanian, polusi air dan udara, pencurian ikan oleh kapal-kapal asing, gunung meletus, hingga bergesernya garis pantai dan batas negara, menjadi masalah krusial untuk dipecahkan. Untuk mencari solusi yang paling menyeluruh, diperlukan data spasial yang dapat memantau Bumi Indonesia melalui satelit Penginderaan Jauh (PJ). Salah satu hal yang dapat dideteksi dengan penginderaan jauh adalah terjadinya kebakaran hutan. Dengan penginderaan jauh, lokasi terjadinya kebakaran akan terdeteksi sebagai hotspot. Dalam penelitian ini data hotspot didapatkan dengan menerapkan algoritma yang digunakan oleh Z. Li (CCRS). Algoritma ini mendeteksi hotspot dari data satelit NOAA/AVHRR dengan menggunakan nilai suhu kecerahan pada kanal 3, 4 dan 5 dan nilai reflektansi pada kanal 2 untuk mengenali piksel potensial hotspot. Data yang digunakan dalam penelitian ini adalah data dari sistem penerimaan data HRPT satelit NOAA dan data yang diambil dari internet. Setelah data hotspot didapatkan, data tersebut akan ditampilkan dalam web-GIS beserta data yang lain seperti garis pantai, garis lintang dan bujur dan data citra satelit NOAA. Dari hasil data hotspot yang didapatkan, pada musim kemarau terdapat banyak hotspot dan pada musim penghujan hanya terdapat sedikit hotspot.
Indonesia`s geographic position which is located between two continent and two ocean, although strategic, it also contain big risk of disaster happening. Climate changes and its insecure position which is surrounded by earth`s plates and geological fracture on earth`s crust results in Indonesia becoming an area which is prone to earthquake and land deformation. Furthermore, forest fire, flood, illegal logging, farm land degradation, water and air polution, fish theft by foreign ship, volcanoes, and the shift of coastline and country border, becomes a crucial problem to be solved. To find a comprehensive solution, spatial data is needed to monitor Indonesia by using remote sensing satellite. One of the things that can be detected by remote sensing is forest fire. With remote sensing, the place where forest fire occurs will be detected as hotspot. In this research, hotspot data is obtained by using the algorithm used by Z. Li (CCRS). This algorithm detects hotspot from NOAA/AVHRR satellite data by using brightness temperature value of channel 3, 4 and 5, and reflectance value of channel 2 to recognize hotspot potential pixel. Data used in this research is obtained from NOAA satellite HRPT data capture system and data obtained from internet. After hotspot data is obtained, the data will be displayed in web-GIS along with other data like coastline, graticules, and NOAA satellite image. From the obtained hotspot data, it is found that on dry season there ara many hotspots and on rainy season there are only a few hotspots.