UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Analisis penggunaan gaussian mixture model sebagai estimasi distribusi severitas pada loss distribution approach untuk risiko operasional = Analysis of using gaussian mixture model to estimated loss severity distribution of loss distribution approach for operational risk

Seli Siti Sholihat; Hendri Murfi, supervisor; Djati Kerami, examiner; Yudi Satria, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015)

 Abstrak

Bank dipersyaratkan oleh pemerintah untuk mengelola risiko-risiko perbankan, salah satunya adalah risiko operasional. Risiko operasional merupakan salah satu jenis risiko yang melekat pada setiap aktifitas fungsional bank. Bank mengelola risiko operasional dengan cara menghitung kerugian yang diperkirakan sebagai kebutuhan modal bagi risiko operasional (Economic Capital). Loss distribution Approach (LDA) merupakan salah satu metode untuk perhitungan Economic Capital (EC). Dalam metode LDA, bank harus mengestimasi loss severity distribution (distribusi severitas) dan frequency distribution (distribusi frekuensi) kemudian membentuk compound distribution (distribusi majemuk). Nilai EC diperoleh dari Value at Risk (VaR) dari distribusi majemuk dengan tingkat kepercayaan 99,9%. Estimasi distribusi severitas umumnya menggunakan model distribusi tertentu yang telah ada, namun pada banyak kasus kurang baik dalam menggambarkan data. Estimasi distribusi severitas berbasis data diharapkan mampu menjadi solusi permasalahan ini. Salah satu metode yang mengestimasi distribusi severitas dengan berbasis pada data adalah Gaussian Mixture Model (GMM). GMM merupakan suatu metode parametrik untuk mengestimasi fungsi distribusi probabilitas dari suatu variabel acak. Model GMM ini merupakan model kombinasi linear sederhana dari beberapa komponen distribusi Gaussian. Hasil penelitian menunjukkan bahwa GMM mampu menggambarkan data lebih baik dibandingkan dengan menggunakan model distribusi yang ada. Nilai EC yang dihasilkan oleh metode LDA yang distribusi severitasnya menggunakan GMM lebih kecil 2-2,8% dibandingkan nilai EC yang dihasilkan oleh metode LDA yang menggunakan model distribusi tersebut.

Bank must be able to manage all of banking risk, on of them is operational risk. Operational risk is a risk that come from any functional activity of bank. Bank manage operational risk by calculate estimated risk (Economic Capital). Loss Distribution Approach (LDA) is a popular method to estimate Economic Capital (EC) of operational risk on banking. In LDA method, loss severity distribution (severity distribution) and loss frequency distribution (frequency distribution) must be estimated and then compound distribution is formed from both of them. Through LDA method, the value of EC can be gotten from Value at Risk (VaR) in compound distribution with the level of confidence reaches 99,9%. Severity distribution estimation that used a model on particular distribution cannot describe a data well through. So, Severity distribution estimation based on data is used to solved this problem. One of methode that estimated severity distribution based on data is Gaussian Mixture Model (GMM). GMM is parametric methode that estimate probability density of random variable. Model of GMM is a linear combination of many Gaussian distribution . The result on this research is estimation of severity distribution through GMM is better than existing distribution model in describing the data. The value at EC of LDA method using GMM is smaller 2 % - 2,8 % than the value at EC of LDA using existing distribution model.

 File Digital: 1

Shelf
 T42867-Seli Siti Sholihat.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T42867
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiii, 43 pages : illustration ; 28 cm. + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T42867 15-18-415574095 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20403697
Cover