UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Aplikasi growing self organizing map dan bee colony optimization algorithm pada group technology = Application of growing self organizing map and bee colony optimization algorithm for group technology

Muhammad Rizki; Amalia Suzianti, supervisor; Erlinda Muslim, supervisor; Akhmad Hidayatno, examiner; Maya Arlini Puspasari, examiner; Amar Rachman, examiner; Boy Nurtjahyo Moch., examiner (Fakultas Teknik Universitas Indonesia, 2014)

 Abstrak

[ABSTRAK
Penelitian ini terdiri dari dua tahap. Growing self-organizing map (GSOM) algorithm dan
hybrid bee colony optimization (BCO) dan self-organizing map (SOM) untuk mengimprove
SOM performance. Pada tahap pertama GSOM digunakan untuk menentukan SOM topology
dan pada tahap kedua, hybrid BCOSOM digunakan untuk mengadjust SOM weights. Metode
BCOSOM akan dibandingkan dengan metode PSO, BCO, SOM, PSOSOM, SOM+PSO, dan
SOM+BCO dengan menggunakan 4 benchmark data sets (Iriss, Glass, Wine, dan Vowel).
Dari hasil komputasi menunjukkan bahwa metode BCOSOM dapat mencari solusi yang lebih
baik dari algoritma lainnya. Dari hasil tersebut, BCOSOM digunakan pada Group
Technology untuk menentukan part families pada komponen plat disebuah perusahaan
medical furniture di Yogyakarta.

ABSTRACT
ABSTRACT This research proposes a two stage method growing self organizing map GSOM algorithm and bee colony optimization BCO based self organizing map BSOSOM to improve SOM performance In the first stage GSOM is used to determine the SOM topology and then followed by BCOSOM to fine tune the SOM weights The proposed BCOSOM algorithm is compared with other algorithms PSO BCO SOM PSOSOM SOM PSO and SOM BCO using four benchmark data sets Iris Glass Wine and Vowel The computational result indicates that BCOSOM algorithm is able to find a better solution than other algorithms Furthermore the proposed algorithm has been also employed to Group Technology to cluster components into part families for a medical manufacture in Indonesia ; ABSTRACT This research proposes a two stage method growing self organizing map GSOM algorithm and bee colony optimization BCO based self organizing map BSOSOM to improve SOM performance In the first stage GSOM is used to determine the SOM topology and then followed by BCOSOM to fine tune the SOM weights The proposed BCOSOM algorithm is compared with other algorithms PSO BCO SOM PSOSOM SOM PSO and SOM BCO using four benchmark data sets Iris Glass Wine and Vowel The computational result indicates that BCOSOM algorithm is able to find a better solution than other algorithms Furthermore the proposed algorithm has been also employed to Group Technology to cluster components into part families for a medical manufacture in Indonesia ; ABSTRACT This research proposes a two stage method growing self organizing map GSOM algorithm and bee colony optimization BCO based self organizing map BSOSOM to improve SOM performance In the first stage GSOM is used to determine the SOM topology and then followed by BCOSOM to fine tune the SOM weights The proposed BCOSOM algorithm is compared with other algorithms PSO BCO SOM PSOSOM SOM PSO and SOM BCO using four benchmark data sets Iris Glass Wine and Vowel The computational result indicates that BCOSOM algorithm is able to find a better solution than other algorithms Furthermore the proposed algorithm has been also employed to Group Technology to cluster components into part families for a medical manufacture in Indonesia , ABSTRACT This research proposes a two stage method growing self organizing map GSOM algorithm and bee colony optimization BCO based self organizing map BSOSOM to improve SOM performance In the first stage GSOM is used to determine the SOM topology and then followed by BCOSOM to fine tune the SOM weights The proposed BCOSOM algorithm is compared with other algorithms PSO BCO SOM PSOSOM SOM PSO and SOM BCO using four benchmark data sets Iris Glass Wine and Vowel The computational result indicates that BCOSOM algorithm is able to find a better solution than other algorithms Furthermore the proposed algorithm has been also employed to Group Technology to cluster components into part families for a medical manufacture in Indonesia ]

 File Digital: 1

Shelf
 T43172-Muhammad Rizki.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T43172
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Salemba: Fakultas Teknik Universitas Indonesia, 2014
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : Xi, 51 pages. illustration.: 30 cm. + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T43172 15-18-534748115 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20404429
Cover