UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Penerapan metode pengelompokan regularized markov clustering (R-MCL) untuk menganalisa kekerabatan virus dengue = Implementation regularized markov clustering (R-MCL) algortihm to analyze family of dengue virus / Darno Raharjo

Darno Raharjo; Alhadi Bustaman, supervisor; Dian Lestari, supervisor; Djati Kerami, examiner; Titin Siswantining, examiner ([Publisher not identified] , 2015)

 Abstrak

[ABSTRAK
Virus dengue terdiri atas 10 protein penyusun yang berbeda dan diklasifikasikan
menjadi empat serotipe utama (DEN 1 ? DEN 4). Penelitian ini dirancang untuk
melakukan pengelompokan terhadap 30 sekuens protein virus dengue yang
diambil dari Virus Pathogen Database and Analysis Resource (ViPR)
menggunakan metode Regularized Markov Clustering (R?MCL) dan untuk
menganalisis hasilnya. Dengan menggunakan program Python 3.4, algoritma
R-MCL diimplementasikan dan menghasilkan 8 kelompok dengan pusat
kelompok lebih dari satu di beberapa kelompok. Banyaknya pusat kelompok
menunjukkan tingkat kepadatan interaksi. Interaksi protein ? protein yang
terhubung padat dalam jaringan cenderung membentuk kompleks protein yang
berfungsi sebagai unit proses biologi tertentu. Hasil analisis menunjukkan hasil
pengelompokan dengan R-MCL menghasilkan kelompok ? kelompok
kekerabatan virus dengue berdasarkan peran yang sama dari protein penyusunnya,
tanpa memperhatikan serotipenya.

ABSTRACT
Dengue virus consists 10 different constituent proteins and are classified into four
major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering
against 30 protein sequences of dengue virus taken from Virus Pathogen Database
and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL)
algorithm and tp analyze the result. By using Python program 3.4, R-MCL
algorithm produces 8 clusters with more than one centroid in several clusters. The
number of centroid shows the density level of interaction. The density of
interactions protein - protein connected in a network tend to form a protein
complex that serves as the unit of specific biological processes. The analyzing
result shows the R-MCL clustering produces clusters of dengue virus family
based on the similirity role of their constituent protein, regardless serotypes;Dengue virus consists 10 different constituent proteins and are classified into four
major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering
against 30 protein sequences of dengue virus taken from Virus Pathogen Database
and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL)
algorithm and tp analyze the result. By using Python program 3.4, R-MCL
algorithm produces 8 clusters with more than one centroid in several clusters. The
number of centroid shows the density level of interaction. The density of
interactions protein - protein connected in a network tend to form a protein
complex that serves as the unit of specific biological processes. The analyzing
result shows the R-MCL clustering produces clusters of dengue virus family
based on the similirity role of their constituent protein, regardless serotypes;Dengue virus consists 10 different constituent proteins and are classified into four
major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering
against 30 protein sequences of dengue virus taken from Virus Pathogen Database
and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL)
algorithm and tp analyze the result. By using Python program 3.4, R-MCL
algorithm produces 8 clusters with more than one centroid in several clusters. The
number of centroid shows the density level of interaction. The density of
interactions protein - protein connected in a network tend to form a protein
complex that serves as the unit of specific biological processes. The analyzing
result shows the R-MCL clustering produces clusters of dengue virus family
based on the similirity role of their constituent protein, regardless serotypes, Dengue virus consists 10 different constituent proteins and are classified into four
major serotypes (DEN 1 - DEN 4). This study was designed to perform clustering
against 30 protein sequences of dengue virus taken from Virus Pathogen Database
and Analysis Resource (VIPR) using Regularized Markov Clustering (R-MCL)
algorithm and tp analyze the result. By using Python program 3.4, R-MCL
algorithm produces 8 clusters with more than one centroid in several clusters. The
number of centroid shows the density level of interaction. The density of
interactions protein - protein connected in a network tend to form a protein
complex that serves as the unit of specific biological processes. The analyzing
result shows the R-MCL clustering produces clusters of dengue virus family
based on the similirity role of their constituent protein, regardless serotypes]

 File Digital: 1

Shelf
 T44667-Darno Raharjo.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T44667
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2015
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiii, 64 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T44667 15-17-706441290 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20415399
Cover