Traveling Salesman Problem (TSP) adalah masalah mencari jalur terpendek untuk mengunjungi setiap simpul tepat satu kali kecuali simpul awal kunjungan jika diberikan himpunan simpul yang harus dikunjungi. Tiga modifikasi dilakukan pada skripsi ini untuk menyelesaikan masalah TSP dengan menggabungkan metode Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) dan 3-Opt Algorithm. ACO digunakan untuk mencari solusi TSP, PSO digunakan untuk mencari nilai paremeter terbaik 𝛼 dan 𝛽 yang digunakan pada ACO, dan 3-Opt digunakan untuk mengurangi total jarak tempuh solusi yang didapat dari ACO. Pada modifikasi pertama, 3-Opt digunakan untuk mengurangi total jarak tempuh dari solusi terbaik yang didapatkan setiap iterasi. Pada modifikasi kedua, 3-Opt digunakan untuk mengurangi total jarak tempuh seluruh solusi yang didapatkan pada setiap iterasi. Pada modifikasi ketiga, 3-Opt digunakan untuk mengurangi total jarak tempuh seluruh solusi yang berbeda yang didapatkan pada setiap iterasi.
Hasil modifikasi diuji menggunakan 6 benchmark problems yang diambil dari TSPLIB dengan menghitung besarnya galat relatif terhadap best known solution dan running time percobaan. Setiap masalah diselesaikan dengan 10 kali percobaan, dengan masing-masing percobaan menggunakan 10 agen dan 50 iterasi. Hasil implementasi menunjukkan modifikasi pertama tidak memberikan hasil yang memuaskan, modifikasi kedua memberikan hasil yang memuaskan namun dengan running time yang cukup besar, serta modifikasi ketiga memberikan nilai galat yang tidak jauh berbeda dengan modifikasi kedua namun dengan running time yang jauh lebih kecil.
The Traveling Salesman Problem (TSP) is the problem of finding a shortest tour which visits all the vertices exactly once, except the first vertex, given a set of vertices. This thesis discusses three modification to solve TSP by combining Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and 3-Opt Algorithm. ACO is used to find the solution of TSP, PSO is used to find the best value of parameters α and β that are used in ACO, and 3-Opt is used to reduce the total of tour length from the solution obtained by ACO. In the first modification, 3-Opt is used to reduce the total of tour length from the best solution obtained at each iteration. In the second modification, 3-Opt is used to reduce the total of tour length from the entire solutions obtained at each iteration. In the third modification, 3-Opt is used to reduce the total of tour length from different solutions obtained at each iteration.
Results were tested using 6 benchmark problems taken from TSPLIB by calculating the relative error to the best known solution and the running time. Every problem was solved with 10 trials, where each trial uses 10 agents and 50 iterations. The implementation results showed the first modification did not provide satisfactory results, the second modification gave a satisfactory result, but the running time was quite large, and the third modification gave errors that were close to the second one but with smaller running time.