Artikel Jurnal :: Kembali

Artikel Jurnal :: Kembali

Framework untuk mendeteksi pemalsuan data pada mobile survey

Ibnu Santoso; (Sekolah Tinggi Ilmu Statistik (STIS-Statistics Institute Jakarta, 2014)

 Abstrak

Interviewer falsifications are relevant problem faced by institutions conducting census and surveys around the world, including BPS-Statistics Indonesia. Falsified data may cause serious impact to generated statistics even though the proportion of falsified data is very small. Usage of Computer Assisted Personal Interviewing (CAPI) in field data collection has proven to improve efficiency and effectiveness. In addition, the use of CAPI is believed to be able to detect data falsification better. This is because CAPI devices can produce a variety of metadata that can not be obtained when using paper questionnaires. This study discusses relevant features to detect interviewer falsification in CAPI-based surveys, validates them, and uses them to identify interviewer falsification automatically using data mining techniques so that human supervisors can take further actions. After analyzing relevant features and conducting experiment, the result showed that unsupervised classification algorithm using simple 2-means clustering could have up to 70,5% accuracy, while supervised classification using logistic regression could have up to 88,5% accuracy.

 Metadata

Jenis Koleksi : Artikel Jurnal
No. Panggil : JASKS 6:2 (2014)
Entri utama-Nama orang :
Subjek :
Penerbitan : Jakarta: Sekolah Tinggi Ilmu Statistik (STIS-Statistics Institute Jakarta, 2014
Sumber Pengatalogan :
ISSN : 20864132
Majalah/Jurnal : Jurnal Aplikasi statistika dan komputasi statistik 6:2 (2014) hal. 94-114
Volume : vol 6 no 2 tahun 2014 Hal.: 94- 114
Tipe Konten : text
Tipe Media : unmediated
Tipe Carrier : volume (rdcarrier)
Akses Elektronik :
Institusi Pemilik : Perpustakaan Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 4 (Ruang. Koleksi Jurnal)
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
JASKS 6:2 (2014) TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20428379
Cover