UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Dynamical mean field theoretical approach to explore the magnetic field dependence of magnetite-graphene oxide nanoparticle systems = Pendekatan dynamical mean-field theory untuk meneliti ketergantungan medan magnet dari sistem nanopartikel fe3o4-graphene oxide

Yusuf Wicaksono; Muhammad Aziz Majidi, supervisor; Andrivo Rusydi, supervisor; Djoko Triyono, examiner; Efta Yudiarsah, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016)

 Abstrak

Kami menunjukkan penelitian secara teoretik pada kenaikan nilai magnetisasi dari sistem nanopartikel Fe3O4 dengan adanya penambahan reduced Graphene Oxide (rGO). Data eksperimen telah menunjukkan bahwa magnetisasi sistem nanopartikel Fe3O4 -rGO meningkat dengan peningkatan jumlah rGO sampai sekitar 5 wt%, tetapi menurun kembali dengan bertambah lebih banyaknya jumlah rGO. Kami mengajukkan bahwa kenaikan terjadi dipengaruhi oleh adanya pembalikan spin pada Fe3+ dalam bagian tertrahedral dibantu oleh kekosongan oksigen di perbatasan partikel Fe3O4 . Kekosongan oksigen diinduksi oleh adanya lapisan rGO yang menarik atom oksigen dari permukaan partikel Fe3O4 disekitarnya. Untuk memahami peningkatan mag- netisasi, kami mengkontruksi model Hamiltonian berdasarkan tight-binding untuk sistem nanopartikel Fe3O4 dengan konsentrasi kekosongan oksigen dikontrol melalui konten rGO. Kami menghitung magnetisasi sebagai fungsi dari medan magnet eksternal untuk berbagai variasi wt% rGo. Kami menggunakan metode dynamical mean-field theory dan melakukan perhitungan pada temperatur ruangan. Hasil kami untuk ketergantungan rGO wt% dari magnetisasi saturasi menunjukkan hasil yang sangat sesuai dengan data eksperimen dari sistem nanopartikel Fe3O4 -rGO yang ada. Hasil ini mungkin dapat menkonfirmasi bahwa model kami telah membawa ide paling penting yang dibutuhkan untuk menjelaskan fenomena kenaikan magnetisasi diatas.

We present a theoretical study on the enhancement of magnetization of Fe3O4 nanoparticle system upon addition of reduced Graphene Oxide (rGO). Experimental data have shown that the magnetization of Fe3O4 -rGO nanoparticle system increases with increasing rGO content up to about 5 wt%, but decreases back as the rGO content increases further. We propose that the enhancement is due to spin-flipping of Fe3+ in the tetrahedral sites assisted by oxygen vacancies at the Fe3O4 particle boundaries. These oxygen vacancies are induced by the presence of rGO flakes that adsorb oxygen atoms from Fe3O4 particles around them. To understand the enhancement of the magnetization we construct a tight-binding based model Hamiltonian for the Fe3O4 nanoparticle system with the concentration of oxygen vacancies being controlled by the rGO content. We calculate the magnetization as a function of the applied magnetic field for various values of rGO wt%. We use the method of dynamical mean-field theory and perform the calculations for a room temperature. Our result for rGO wt% dependence of the saturated magnetization shows a very good agreement with the existing experimental data of the Fe3O4 -rGO nanoparticle system. This result may confirm that our model already carries the most essential idea needed to explain the above phenomenon of magnetization enhancement.

 File Digital: 1

Shelf
 S64333-Yusuf Wicaksono.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S64333
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
Bahasa : eng
Sumber Pengatalogan : LibUI eng rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resources
Deskripsi Fisik : xii, 49 pages : illustration ; 28 cm
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S64333 14-22-76308183 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20429994
Cover