UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Fuzzy c-means pada ruang eigen untuk pendeteksian topik = Fuzzy c means in eigen space for topic detection / Triyana Muliawati

Triyana Muliawati; Hendri Murfi, supervisor; Kiki Ariyanti, examiner; Alhadi Bustamam, examiner; Dipo Aldila, examiner ([Publisher not identified] , 2016)

 Abstrak

ABSTRAK
Seiring perkembangan teknologi informasi dan komunikasi, pemenuhan
kebutuhan informasi dapat diperoleh melalui media sosial, seperti Twitter.
Banyaknya pengguna internet telah memicu aliran data yang sangat besar dan
cepat, sehingga membuat analisis secara manual sulit atau bahkan tidak mungkin
dilakukan. Metode otomatis diperlukan untuk menganalisis data tersebut yang
salah satunya yaitu dengan topic detection and tracking (TDT). Suatu metode
alternatif laindari TDT untuk masalah pendeteksian topik selain latent dirichlet
allocation (LDA) adalah fuzzy clustering dengan menggunakan algoritma fuzzy Cmeans
(FCM). FCM pada pendeteksian topik dapat memenuhi asumsi bahwa
suatu dokumen pada Twitter dapat terdiri dari beberapa topik. FCM bekerja cukup
baik di dimensi data yang rendah, akan tetapi gagal dalam dimensi data yang
tinggi. Oleh karena itu, dibutuhkan suatu metode untuk mereduksi dimensi ruang
eigen yang tinggi ke dimensi yang lebih rendah. Salah satu metodenya adalah
singular value decomposition (SVD) dengan menggunakan truncated SVD. Pada
penelitian ini, dilakukan prosestruncated SVD kemudian FCM yang
dinamakanfuzzy C-means pada ruang eigen (Eigen FCM). Hasil akurasi dari
metode ini menunjukkan peningkatan lebih baik dibandingkan FCM dan LDA
pada pendeteksian topik.

ABSTRACT
As the information and communication technology developed, the fulfillment of
information can be obtained through social media, like Twitter. The enormous
number of internet users has triggeredfast and large data flow, thus making the
analysis manually is difficult, or even impossible. The automated methods for
data analysis is needed now, one of which is the topic detection and tracking
(TDT). An alternative method other than TDT fortopic detection problemother
than latent dirichlet allocation (LDA) is a fuzzy clustering algorithms using fuzzy
C-means (FCM). FCM in topic detection meet the assumption that a document on
Twitter can consists of several topics. FCM works pretty well in low-dimensional
data, but fail in high-dimensional data. Therefore, we need a method to reduce the
dimension of the high-dimensional eigenspaceinto lower dimension. One method
to do that is the singular value decomposition (SVD) using truncated SVD. This
papercarried out the truncated SVD process then FCM called fuzzy C-means on
the eigenspace (Eigen FCM). The results of the accuracy of this method shows an
increase is better than FCM and LDA on topic detection.

 File Digital: 1

Shelf
 T45625-Triyana Muliawati.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T45625
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2016
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiv, 71 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T45625 15-18-760526339 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20433793
Cover