Misalkan G= V,E adalah suatu graf dengan V adalah himpunan simpul dan E adalah himpunan busur. Ketetanggaan pada suatu graf dapat direpresentasikan dengan matriks adjacency dan matriks antiadjacency. Sifat determinan matriks adjacency graf tak berarah dan sifat determinan matriks antiadjacency pada graf berarah telah dibahas, akan tetapi sifat determinan matriks antiadjacency pada graf tak berarah belum mendapat perhatian oleh para peneliti. Penelitian ini memberikan sifat determinan matriks antiadjacency pada beberapa graf hasil operasi dua graf seperti gabungan, join, korona dan penambahan satu simpul daun.
Let G V,E be a graph with V is a set of vertices and E is a set of edges. Adjacency of vertices in a graph can be represented by adjacency matrix and antiadjacency matrix. Properties of determinant of an adjacency matrix in undirected graphs and properties of determinant of an antiadjacency matrix of directed graphs have been discussed. However, properties of determinant of an antiadjacency matrix of undirected graph have not been explored yet. This undergraduate thesis provides properties of determinant of an antiadjacency matrix of several graph operations such as union, join, corona and adding one leaf vertex.