UI - Disertasi Membership :: Kembali

UI - Disertasi Membership :: Kembali

Pelacakan visual cepat dan optimal berdasarkan metode spektral dalam kerangka bayesian = Fast and optimal visual tracking based on in bayesian framework

Alexander Agung Santoso Gunawan; Aniati Murni Arymurthy, promotor; Wisnu Jatmiko, co-promotor; T. Basarudin, examiner; Petrus Mursanto, examiner; Mohamad Ivan Fanany, examiner; Bob Hardian, examiner; Agus Buono, examiner ([Publisher not identified] , 2016)

 Abstrak

ABSTRAK
Pelacakan objek secara visual adalah proses melokalisasi terus menerus entitas visual pada suatu urutan video. Disertasi ini menyelidiki masalah short-term model-free tracking yang mempunyai tujuan utama untuk melacak sembarang objek berdasarkan satu kotak anotasi dari objek dan oleh karena itu disebut sebagai model-free. Short-term di sini berarti bahwa pelacak tidak melakukan deteksi ulang setelah target menghilang dalam pelacakan. Banyak faktor yang mempengaruhi kinerja algoritma pelacakan. Dalam Visual Tracker Benchmark, terdapat sebelas tantangan dalam pelacakan objek, yaitu: variasi iluminasi, variasi skala, oklusi, deformasi, blur, gerakan yang cepat, in-plane rotation, out-of-plane rotation, keluar dari pandangan, latar belakang yang kusut, dan resolusi yang rendah. Selama ini belum ada satu pelacak yang berhasil menangani semua skenario tersebut dengan kokoh robust . Selain itu, implementasi dari pelacak ini harus cukup cepat fast agar berguna dalam aplikasi nyata. Disertasi ini mengusulkan algoritma pelacakan yang baru dalam kerangka Bayesian. Algoritma yang diusulkan dikonstruksi dengan memecahkan optimal particle filter OPF secara efisien menggunakan metode spektral. Oleh karena itu, pelacak yang dikonstruksi disebut sebagai spectral tracker ST . Walaupun pelacak ini dapat melakukan komputasi posisi secara efisien, tetapi tidak dapat mengestimasi skala dan rotasi. Untuk mengatasi kelemahan ini, diusulkan penggunaan banyak titik observasi sekaligus dan menggunakan informasi pergerakan titik-titik observasi ini untuk mengestimasi skala dan rotasi. Selanjutnya dilakukan eksperimen untuk melihat pengaruh pra-pemrosesan citra meliputi warna, tekstur dan saliensi pada kinerja pelacakan dengan membangun 6 variasi model observasi dari pelacak ST. Akhirnya, kinerja variasi pelacak ST ini dibandingkan dengan 9 pelacak pembanding yang relevan pada 100 himpunan data. Hasil secara keseluruhan terdapat sebuah peningkatan unjuk kerja terutama dalam hal kekokohan dan kecepatan. Tetapi pada evaluasi yang lebih rinci dalam menghadapi 11 tantangan, ternyata pendekatan yang berbeda dari setiap pelacak ternyata menghasilkan unjuk kerja yang berlainan dalam menghadapi setiap tantangan tersebut.

ABSTRACT
Visual object tracking is the process of continuously localizating a visual entity or visual entities in a video sequence. This dissertation investigates short term model free tracking which the main purpose is tracking of arbitrary objects based on a single bounding box annotation of the object, which then called as model free. The short term tracking means that the tracker does not perform re detection after the target is lost. Numerous factors affect the performance of a tracking algorithm. In Visual Tracker Benchmark, there are eleven main tracking challenges, including illumination variation, scale variation, occlusion, deformation, motion blur, fast motion, in plane rotation, out of plane rotation, out of view, background clutters, and low resolution. There exists no single robust tracker that successfully handles all scenarios nowadays. Moreover, the implementation of tracker should be fast enough to be useful in real applications. We propose a novel algorithm based on Bayesian paradigm that works in frequency domain and exploits spectral method for solving optimal particle filter scheme in Bayesian framework. Therefore the tracker is called as spectral tracker ST . In order to able to estimate scaling and rotation, we modify the tracker to use multiple observation points. Futhermore, several experiments is done to see impact of observation model by manipulating image in color, texture and saliency. As result, we design six variation of spectral tracker based on the observation model. Finally, the performance of the tracker is compared with other relevant trackers on benchmark dataset sequences. An improvement over state of the art methods is achieved, in term of robustness and speed. Nevertheless, the evaluation of eleven tracking challenges shows that different approaches of tracker have unique performance in each challenge.

 File Digital: 1

Shelf
 D-Alexander Agung Santoso Gunawan.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Disertasi Membership
No. Panggil : D-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2016
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvii, 166 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
D-Pdf 07-19-557288433 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20446680
Cover