Many kinds of classification method are able to diagnose a patient who suffered Hepatitis disease. One of classification methods that can be used was Least Squares Support Vector Machines (LSSVM). There are two parameters that very influence to improve the classification accuracy on LSSVM, they are kernel parameter and regularization parameter. Determining the optimal parameters must be considered to obtain a high classification accuracy on LSSVM. This paper proposed an optimization method based on Improved Ant Colony Algorithm (IACA) in determining the optimal parameters of LSSVM for diagnosing Hepatitis disease. IACA create a storage solution to keep the whole route of the ants. The solutions that have been stored were the value of the parameter LSSVM. There are three main stages in this study. Firstly, the dimension of Hepatitis dataset will be reduced by Local Fisher Discriminant Analysis (LFDA). Secondly, search the optimal parameter LSSVM with IACA optimization using the data training, And the last, classify the data testing using optimal parameters of LSSVM. Experimental results have demonstrated that the proposed method produces high accuracy value (93.7%) for the 80-20% training-testing partition
Banyak metode klasifikasi yang mampu mendiagnosa seorang pasien mengidap penyakit Hepatitis, salah satunya adalah menggunakan metode klasifikasi Least Squares Support Vector Machines (LSSVM). Terdapat dua parameter yang sangat berpengaruh pada LSSVM yaitu parameter kernel dan parameter regularisasi. Penentuan parameter optimal tersebut harus diperhatikan untuk mendapatkan akurasi klasifikasi yang tinggi pada LSSVM. Penelitian ini mengusulkan metode optimasi Improved Ant Colony Algorithm (IACA) dalam penentuan parameter optimal LSSVM untuk mendiagnosa penyakit Hepatitis. IACA membuat penyimpanan solusi untuk menjaga rute dari keseluruhan semut. Solusi yang disimpan adalah nilai parameter LSSVM. Ada 3 tahapan utama pada penelitian ini yaitu, dimensi dataset Hepatitis direduksi menggunakan metode Local Fisher Discriminant Analysis (LFDA), kemudian parameter optimal LSSVM dicari dengan metode optimasi IACA menggunakan data training, setelah itu data testing diklasifikasikan menggunakan parameter optimal LSSVM. Hasil uji coba menunjukkan bahwa metode yang diusulkan menghasilkan nilai akurasi yang tinggi (93,7%) pada partisi 80-20% training dan testing.