Penelitian ini membahas studi tentang deteksi perubahan penutup lahan Kalimantan Tengah, menggunakan multi-temporal Synthetic Aperture Radar (SAR) JERS-i. Penggunaan citra SAR untuk observasi muka bumi dimana kondisi berawan dan kabut merupakan hambatan utamanya, mempunyai potensi yang sangat besar dalam memonitor perubahan area. Tetapi adanya proses koherensi data SAR membuat citra tersebut dengan mudah akan tercemar oleh bising speckle, yang merupakan.sinyal tak bebas dan berlaku sebagai bising multiplikatif.
Pokok bahasan dari penelitian ini yang pertama adalah meminimumkan bising (denoising) speckle dengan menggunakan algoritma a trous. Selanjutnya kesulitan penggunaan citra optis untuk identifikasi obyek pada daerah yang sering berawan dan hujan lebat akan digantikan dengan citra SAR dengan memanfaatkan sifat transfcrmasi dari algoritma wavelet a troust. Transformasi ini akan menghasilkan satu set citra detail dari skala yang berbeda, sehingga citra SAR yang merupakan single band akan mendapatkan tambahan band dari citra-citra detail tersebut. Dengan demikian pemrosesan citra SAR dapat dianalogikan sebagai pemrosesan multiband dari citra optis, sehingga dapat menggali lebih banyak informasi untuk identifikasi obyek. Tahap berikutnya dilakukan pengklasteran pada citra detail tersebut dengan teknik Pemetaan Swa-Atur (Self-Organizing Map (SOA4)") karena tidak tersedianya data groundtruth. Tahap lerakhir adalah deteksi perubahan area menggunakan teknik Pcrbedaan Citra ("Image Differenciing") dan Analisa Komponen Utama ("Principle Component Analysis (PCA)").
Proses denoising pada pra-pengolahan akan dilakukan dengan menggunakan pemodelan bising. Pada citra SAR karena bisingnya adalah speckle yang bersifat multiplikatif maka perlu dilakukan proses homomorphik, yaitu proses untuk memisahkan komponen deterministik (sinyal) dengan komponen statistik (bising) sehingga bising dapat dimodelkan dalam bentuk Gaussian. Untuk itu sebelum denoising citra akan di log-kan terlebih -dahulu sehingga terpisah antara kompcnen sinyal dan komponen bisingnya. Transformasi a trous adalah transformasi wavelet multiresolusi yang dilakukan skala (resolusi) per skala tanpa ada desimasi. Hasilnya adalah satu set citra detail wt (dimana i menyatakan tingkat skala, I 1,2.j ) dan satu citra approksimasi pada skala tertinggi c1, tanpa terjadi peruoahan ukuran citra pada setiap skala. Dalam transformasinya harga piksel ke-k ditentukan oleh c;+r(k) = ., h(n) c;(kl 2'n), dimana h adalah koefisien filter 133 spline dengan -2 n < +2 , menyebabkan harga pixel tersebut menjadi berkurang atau bertambah ditentukan oleh 5 harga pixel yang ke-(k+2'n). Secara analitis korelasi citra detail pada skala (i-1) dengan citra detail pada skala I dapat dibuktikan melalui w; = c(,.0 - c; dan secara eksperimen dapat dibuktikan melalui matriks korelasi dari PCA. Dengan adanya korelasi menyebabkan persoahan obyek dalam citra-citra detail dapat diamati. Citra detail dari transformasi a trous yang masih mengandung bising speckle akan di denois menggunakan teknik Multiresolution Support, yaitu teknik untuk uji signifikansi bising pada setiap pixel dari citra. Signifikansi bising didasarkan pada nilai standard deviasi 6; dari citra detail pada skala j dikalikan dengan konstanta K, yaitu K6.j. Hal inilah yang menyebabkan pemilihan harga K dipengaruhi oleh daerah observasi. Pada penelitian ini di lakukan percobaan dengan harga K = 2, 2.5, 3, 3.5 dan hasilnya yang terbaik adalah K = 3. Hasil rekonstruksi setelah uji signifikansi Multiresolulion Support adalah citra dengan residual artifact atau citra dengan struktur yang tidal: sebenarnya, oleh karena itu perlu dilakukan proses guna mengurangi efek residual artifact tersebut. Proses pengurangan residual artifact adalah suatu proses iterasi dimana akan dihitung citra residu, yaitu pengurangan citra asli dikurangi dengan citra dengan residual artifact. Pada setiap iterasi citra residu akan ditransformasi menggunakan a trous menjadi satu set citra detail residu dan citra appraksimasi residu. Selanjutnya ditentukan koefisien wavelet signifikan dan dilakukan rekonstruksi kembali. Bila residu masih dinyatakan signifikan maka citra residu akan ditambahkan ke citra residual artifact pada proses sebelumnya. Selanjutnya dilakukan proses iterasi kembali sampai harga residu sudah tidak signifikan lagi. Pada penelitian ini diambil toleransi error a 5 0.002 dan hasilnya adalah citra yang telah di denois atau citra denoising. Pada kelompok wavelet, hasil denoising menggunakan trous dapat menekan bising sampai 43% tanpa ada kerusakan struktur dan penurunan nilai rata-rata yang sangat rendah sampai 0.005%. Meskipun hasil denoising tidak sebaik Haar (50%) atau Daubechies (481') tapi trous mempunyai kekhususan dimana nilai variannya masih cukup tinggi, tidak mengalami pengerutan ukuran pada saat transformasi dan terdapat redundansi pada citra detaiinya sehingga tidak banyak kehilangan informasi. Hasil penelitian ini juga memperlihatkan bahwa transformasi a Emus mempunyai performansi yang cocok untuk aplikasi deteksi perubahan penutup laltan, karena obyek dalam citra, dapat diamati dalam skala yang berbeda. Makin tinggi tingkat resolusinya maka obyek dengan frekuensi rendah (misal sungai) akan makin jelas struktumya, sedang obyek dengan frekuensi tinggi (misal pohon-pohon yang bergerombol) akan nampak pada beberapa skala rendah dan selanjutnya akan menghilang. Hal ini terjadi karena dalam transfonnasinya harga pixel pada skala-(j+ I) ditentukan berdasarkan harga pixel ke-(k+2'n).
Selanjutnya untuk identifikasi obyek, citra denoising akan ditransforrnasi menggunakan wavelet a trous sampai skala 4, karena pada skala 5, terlihat pembesaran obyek sungai sudah tidak proporsional Iagi. Citra detail ini akan di analogikan sebagai band-band seperti pada teknik pemrosesan multiband dari citra optis. Selanjutnya dilakukan pengklasteran pada masing-masing citra detail menggunakan teknik Pentetaan Swa-Atur (SCM), Untuk melakukan deteksi perubahan penutup lahan, akan dilakukan dua cars pemrosesan yaitu pertama akan dilakukan proses Perbedaan Citra pada satu set citra detail yang sudah terklaster dan yang kedua menggunakan PCA, Pada proses PCA dilakukan penseleksian band berdasarkan harga eigenvalue kovariannya. Pertama dipilih band dengan eigcn value terbesar, selanjutnya dipilih band lain yang mempunyai harga eigenvalue kovarian ? 10% dari harga eigenvalue band terbesar. PCA terpilih akan diklasterkan dan dilakukan proses Perbedaan Citra. Hasilnya diperoleh bahwa ada kemiripan antara basil dari proses PCA dan yang langsung dari Perbedaan Citra. Hasil pengamatan memperlihatkan bahwa telah terjadi perubahan pada daerah rawa, scattered trees dan tropical grass, sedangkan untuk obyek sungai, baik yang dalam maupun yang dangkal, sedikit sekali perubahannya. Verifikasi obyek dilakukan menggunakan peta thematik dengan skala 1:250.000 dan citra Landsat TM Kalimantan tengah yang diambil pada Maret (97).
Wavelet A. Trolls Algorithm Aided Synthetic Aperture Radar Image Analyses Applied to Land Cover C1-Imange Detection in Central Kalimantan This research studied the land coverage change detection in Central Kalimantan using multi-temporal Synthetic Aperture Radar (SAR) MRS-I. The use of SA.R image for earth surface observation where haze and cloud coverage become a problem, has great potentiality in monitoring the area change. Due to coherence process of the SAR data, this makes the image easily contaminated by speckle noise, which is an independent signal and act as multiplicative noise.
The main topic of this research is to minimize the speckle noise (denoising) by using the trout algorithm. Subsequently, to identify objects, SAR image processing is analogue with multiband process of the optical image. Because SAR is single band, a trous wavelet transformation is used to obtain the additional band for a set of detail image. The next step is clustering on the detail image with Self-Organizing Map {SOM} technique due to the unavailability of ground truth. The final step is area change detection with Image Differencing and Principle Component Analysis (PGA) techniques.
The denoising in pre-process is performed with noise modeling. In SAR image, since the noise is speckle that is multiplicative in nature, homomorphism process or the process to separate deterministic (signal) and statistic (noise) components is performed so the noise can be modeled in Gaussian. Therefore, before denoising process, image has to take its logarithm first so the signal component is separated from the noise component. A trous transformation is a multiresolution wavelet transformation done in scale (resolution) by scale without decimation. The result is a set of detail image wt (where i represents scale level, r = 1,2.j ) and one approximation image in highest scale e without change in image size in all scales. This did not occur in known wavelet transforms, like Haar and Daubechies, where the transformation has one specific direction and suffering from the shrinking of the image size with the increase of the scale resolution. In the transformation, the value of the 11f' pixel determined by c;+r(k) = 2, h(n) c;(k+2'n), where h is the B3 spline filter coefficient with -2 5 n 5 +2, causing the value of the pixel to decrease or increase according to five (k+2'n) pixel values. The detail image on scale i is obtained from w, = c(1_J) - c,, so there are redundancy of the detail image scale (i-i) with the scale i. This causes the object changes in detail images to become observable. The detail image from a trous transformation that still contain speckle noise is denoised with Multiresolution Support technique, which is a technique for noise significancy testing on each image pixels. The noise significance is based on the standard deviation value of the detail image on the scale j (cr) multiplied with the constant K, that is K6;. This causes the choice of K value affected by the observation area. In this research, experiments are performed with the value of K = 2, 2.5, 3, 3.5 and, the best result is at the K value of 3. The reconstruction result after Multiresolution Support significance test is an image with residual artifact; therefore, it is needed to perform a process to reduce the effect of the residual artifact. The process to reduce the residual artifact is an iteration process where residual image is counted, which is original image reduction subtracted by image with residual artifact. During each iteration, residual image is transformed with a trous into a set of residual detail images and a residual approximation image. Subsequently, significant wavelet coefficient is determined, and the reconstruction is performed. If the residue still significant, then the residual image is added to the residual artifact image of the previous process, and the iteration is performed until the residual value is not significant. In this research, error tolerance is taken at e 5 0,002 and the result is a denoised image.
In a wavelet group, the denoising result with a trous can suppress the noise down to 43% without structural damage and very low average devaluation of 0.005%. Although the denoising result is not as good as Haar (50%) or Daubechies (48%), a trous have specification that the transformed image result did not suffer the shrinking in size and have redundancy on the detail image so it's not lose much information. While in wavelet transformation with Haar and Daubechies, the higher the scale will result in structural damage, where visually indicated by boxed shape in Haar, and spots in Daubechies. The result of this research also shown that 'a trous transformation have suitable performance for land coverage area change detection application, and since the objects are in images, it's observable in different scales. Low-frequency objects will become clearer when the resolution is higher, while higher-frequency objects visible in some lower scales and subsequently disappearing. This happens because in the transformation the pixel value in the scale -0+1) is determined by the value of the pixel -(k+ 2'n).
For the object identification, denoised image is transformed with a trous wavelet resulting in a set of detail images. Image transformation is done to 4U' scale, since in the 5u' scale, the object magnification is no longer proportional. This detail image is analog as bands like in multib and processing of optical image. Clustering is done on each detail images with. Self-Organizing Map technique. To detect the area coverage change, two processes are performed. First is direct Image Differencing process on a set of clustered detail images, second is with the PCA. In the PCA process, the first step is band selection based on the eigen value co-variant. The band with the biggest eigen value is chosen first, then pick another band with co-variant eigenvalue ? 10% of the biggest. eigen value band. The chosen PCA from March 97 and August 98 images are clustered and processed with image Differencing. So, to process the area change detection with SAR image could be done right away with a trolls wavelet transformation, and for the area detection is using Image Differencing. The result indicates that there are similarities between the result with PCA and without PCA. The observation result shown that there are changes on swamps, scattered trees, and tropical grass areas. While for rivers, either deep or shallow, there is very little change. Object verification is done with thematic map on 1:250000 scale and Landsat TM image taken on March 97.