Artikel Jurnal :: Kembali

Artikel Jurnal :: Kembali

Exploring the effect of particle concentration and irradiation time in the synthesis of barium strontium titanate (bst) ba(1-x)srxtio3 (x:0-1) nanoparticles by high power ultrasonic irradiation

by Erlina Yustanti, Mas Ayu Elita Hafizah, Azwar Manaf ([Publisher not identified] , 2016)

 Abstrak

Barium strontium titanate (BST) or Ba1-xSrxTiO3 with x=0-1 possesses superior dielectric properties, which are widely used in many applications like in communication technology, electronic instrumentations, and various electrical devices. In this paper, the characterization of the particle and crystallite size of Ba1-xSrxTiO3 (x: 0; 0.3; 0.7) is described. A two-step refinement commenced: first by mechanical milling, and then a further refinement under ultrasonic irradiation in a high power sonicator was applied to Ba1-xSrxTiO3 (x: 0; 0.3; 0.7) particles. The crystalline powders were obtained through mechanically alloyed standard research grade BaCO3, TiO2, and SrCO3 precursors in a planetary ball mill.The powders were first found heavily deformed after 60 hours of milling and then went through a sintering process at 1200°C for 4 hours to form multicrystallite particles. The presence of a single phase in the three samples was solidly confirmed in their respective X-ray diffraction (XRD) patterns. The changes of multicrystallite particles into monocrystallite particles were obtained only after crystalline powders were irradiated ultrasonically in a high power sonicator. The processing variable during ultrasonic irradiation was limited to the duration time of irradiation and particle concentration in the exposed media. It is shown that the average sizes of BST particles at x=0; 0.3; 0.7 before ultrasonic irradiation were 353, 348, and 385 nm, respectively. These respective sizes decreased drastically to 52, 35, and 49 nm, respectively, after 12 hours of ultrasonic irradiation. These particle sizes are almost identical with that of their crystallite size. Hence, the synthesis of monocrystallite particles has been achieved. As the particle concentration of media takes effect, it is shown that an exposed media with a higher particle concentration tends to form multicrystallite particles.

 Metadata

Jenis Koleksi : Artikel Jurnal
No. Panggil : AJ-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2016
Sumber Pengatalogan : LibUI eng rda
ISSN : 20872100
Majalah/Jurnal : International Journal of Technology (IJTECH)
Volume : Vol 7, No 6 (2016) 1016-1025
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Akses Elektronik : http://www.ijtech.eng.ui.ac.id/index.php/journal/article/view/4926
Institusi Pemilik : Universitas Indonesia
Lokasi :
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
AJ-Pdf 03-17-355520186 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20449756
Cover