Artikel Jurnal :: Kembali

Artikel Jurnal :: Kembali

Point estimation of birnbuam-saunders distribution using EM-algorithm / Wikanda Phaphan

Wikanda Phaphan; (King Mongkut?s University of Technology North Bangkok. Faculty of Applied Science, 2017)

 Abstrak

The Birnbaum-Sanders (BS) distribution was first introduced in 1969 by Birnbaum and Saunders as a combination of inverse Gaussian distributions with a length-biased inverse Gaussian distribution. Later, in 2008, Ahmed et al. introduced a new parametrization of the BS distribution based on Birnbaum-Sanders, and they also proposed a parameter estimation using the method of moments and regression-quantile estimation. In this paper, we emphasize the Birnbaum-Sanders distribution presented by Ahmed et al., and we develop an EM-algorithm to estimate two unknown parameters of this distribution. The EM-algorithm is a general method used to estimate the parameters when the probability density function is complicated and it is the best alternative for the estimation of a mixture distribution. We assumed that this problem has a missing value, and maximized complete data log-likelihood function instead log-likelihood function because it is analytically easier. Moreover, some simulation experiments were conducted in order to examine the performance of the proposed parameter estimation, and it was observed that the performances were quite satisfactory. Specifically, the MSE, variance and bias tend to decrease as n increases.

 File Digital: 1

 Metadata

Jenis Koleksi : Artikel Jurnal
No. Panggil : 500 TIJST 22:1 (2017)
Entri utama-Nama orang :
Subjek :
Penerbitan : [Place of publication not identified]: King Mongkut?s University of Technology North Bangkok. Faculty of Applied Science, 2017
Sumber Pengatalogan : LibUI eng rda
ISSN : 08594074
Majalah/Jurnal : Thammasat International Journal of Science and Technology
Volume : Vol. 22, No. 1, Januari-Maret 2017: Hal. : 109-115
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Akses Elektronik : https://www.tci-thaijo.org/index.php/tijsat/article/view/80889/67275
Institusi Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 4, R. Koleksi Jurnal
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
500 TIJST 22:1 (2017) TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20451912
Cover