UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Sistem prediksi kadar air buah pisang (musa sp.) berbasis citra VNIR (visible light-near infrared) = Moisture content prediction system of banana (musa sp.) based on VNIR (visible light near infrared imaging)

Siregar, Septi Tri Wahyuni; Adhi Harmoko Saputro, supervisor; Windri Handayani, examiner; Cuk Imawan, examiner; Ede Surya Darmawan, examiner ([Publisher not identified] , 2017)

 Abstrak

ABSTRAK
Umumnya kadar air buah dapat diukur dengan membandingkan reduksi massa benda dengan metode pengeringan oven. Dalam tulisan ini, sistem prediksi kadar air pisang diperkenalkan dengan teknik pencitraan VNIR Visible Light ndash; Near Infrared . Teknik pencitraan hiperspektral dengan menggunakan citra VNIR merupakan teknologi yang dapat diandalkan dalam pengujian kualitas buah secara non destruktif, cepat dan efisien. Sistem prediksi ini menggunakan PCA dan PLS sebagai model regresi untuk mendapatkan hasil kuantitatif nya. Hasil regresi yang didapatkan dari PCA untuk pisang raja berupa RMSE Root Mean Square Error sebesar 0.65 dan R2 Coerrelation Coefficient sebesar 0.71. Sedangkan hasil dari PLS yaitu RMSE sebesar 0.54 dan R2 sebesar 0.82. Hasil regresi dari PLS relatif lebih baik daripada PCA dan lebih akurat. Untuk mengetahui klasifikasi tingkat kematangannya, sistem prediksi kadar air pisang ini menggunakan SVM.

ABSTRACT
Commonly, the fruit moisture content could be measured by comparing the mass decrement of object through oven drying method. In this paper, a bananas moisture content prediction system was introduced using Visible Light ndash NIR imaging technique. Hyperspectral imaging technique using VNIR image is a reliable technology in fruit quality testing non destructive, fast and efficien. The prediction system uses PCA and PLS as a regression model to get its quantitative results. Regression results obtained from PCA for Raja bananas in the form of RMSE Root Mean Square Error of 0.65 and R2 Correlation Coefficient of 0.71. While the results of the PLS RMSE of 0.54 and R2 of 0.82. Regression results from PLS are relatively better than PCA and more accurate. To determine the classification of the level of maturity, the moisture content of bananas prediction system uses SVM Support Vector Machine.

 File Digital: 1

Shelf
 Siregar, Septi Tri Wahyuni-skripsi-FMIPA-2017.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S67131
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2017
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiv, 63 pages : Illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S67131 14-19-062031262 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20456689
Cover