UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Sistem pengukuran kadar gula total pada buah pisang (musa sp.) berbasis citra V-NIR = Measurement system of sugar content in banana (musa sp.) based on V-NIR imaging

Dina Akmalia; Adhi Harmoko Saputro, supervisor; Windri Handayani, supervisor; Prawito Prajitno, examiner; Cuk Imawan, examiner ([Publisher not identified] , 2017)

 Abstrak

ABSTRAK
Kadar gula total merupakan salah satu parameter internal untuk kualitas buah. Pada penelitian ini diperkenalkan sistem pengukuran kadar gula total tanpa merusak buah menggunakan hyperspectral imaging dalam rentang panjang gelombang V-NIR 400-1000 nm . Komponen utama pada sistem hyperspectral imaging adalah lampu halogen dan kamera hiperspektral. Hyperspectral imaging bekerja dengan memanfaatkan data reflektansi dari permukaan buah pisang dan menggunakan Partial Least Square Regression PLSR dan Support Vector Machine SVM untuk analisis spektral dan spasial yang menghasilkan model yang dapat memprediksi nilai kadar gula total dan klasifikasi tingkat kematangan pada buah pisang. Nilai kadar gula total pada buah pisang sebagai data pembanding diuji menggunakan refraktometer. Pada penelitian ini digunakan 15 pisang raja dan 15 pisang ambon yang terdiri dari 5 pisang mentah, 5 pisang matang dan 5 pisang terlalu matang. Dari PLSR dan SVM model didapatkan nilai RMSE 0,4091 , koefisien korelasi R2 sebesar 0,997 dan kesalahan klasifikasi 0 untuk pisang raja dan didapatkan nilai RMSE 0,4802 , koefisien korelasi R2 sebesar 0,996 dan kesalahan klasifikasi 0 untuk pisang ambon. Hasil penelitian menunjukkan bahwa sistem hyperspectral imaging dapat digunakan sebagai instrumen untuk pengukuran kadar gula total pada buah pisang.

ABSTRACT
Sugar content is one of the internal parameters for fruit quality. In this study, a non destruction measurement system for sugar content is introduced using hyperspectral imaging in the V NIR spectral range 400 1000 nm . The main components of the hyperspectral imaging system are halogen lamps and hyperspectral cameras. Hyperspectral imaging works by utilizing reflectance data from banana surfaces and using Partial Least Square Regression PLSR and Support Vector Machine SVM for spectral and spatial analysis that create a model that can predict total sugar content and banana maturity stage classification. The value of sugar content in banana was tested using refractometer as comparison data. In this study used 15 raja bananas and 15 ambon bananas consisting of 5 raw bananas, 5 ripe bananas and 5 overripe bananas. PLSR and SVM model provided RMSE of 0,4091 , correlation coefficient R2 of 0,997 and classification error of 0 for raja bananas and provided RMSE of 0,4802 , correlation coefficient R2 of 0,996 and classification error of 0 for ambon bananas. The results showed that the hyperspectral imaging system can be used as an instrument for measuring total sugar content in bananas.

 File Digital: 1

Shelf
 Dina Akmalia-Skripsi-FMIPA-2017.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S67036
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : [Place of publication not identified]: [Publisher not identified], 2017
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiii, 48 pages : illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S67036 14-19-717019321 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20456836
Cover