UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pendeteksian manusia berbasis face recognition berdasarkan metode local binary pattern feature (LBP) dan deformable part model (DPM) = Human detection based on face recognition used local binary pattern feature (LBP) and deformable part model (DPM) methods

Elnasari Ramadhan; Surya Darma, supervisor; Santoso Sukirno, examiner; Prawito, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017)

 Abstrak

Teknologi drone banyak dikembangkan dan digunakan, khususnya pemantauan di medan-medan yang susah terjangkau manusia, namun metode pendeteksian manusia belum ada yang diimplementasikan pada drone. Metode pendeteksian manusia yang sedang populer sekarang seperti metode Histogram of Gradient HoG Local Binary Pattern Feature LBP dengan tingkat keberhasilan mencapai 80 , metode Deformable Part Model DPM dengan tingkat keberhasilan 50 . Penelitian ini melaporkan tingkat keberhasilan dari metode pendeteksian wajah menggunakan LBP diintegrasikan DPM yang nantinya akan coba ditanamkan sebagai penentu pergerakan drone quadcopter . Objek yang tertangkap kamera akan diolah gambarnya dengan metode LBP dan DPM, kedua metode ini berfungsi sebagai feature extraction, dimana gambar diolah sehingga didapatkan data karakteristik dari bentuk gambar yang diekstrak. Data karakteristik akan dicocokkan dengan data model wajah manusia menggunakan classification, sehingga bisa didapatkan tingkat kecocokan objek dengan model. Jika objek sesuai dengan model, akan dikirim jarak dari drone dan objek ke Single Board Computer SBC sebagai acuan pergerakkan drone untuk menggerakan Robot Operating System ROS drone untuk mendekati objek. Jika diperiksa untuk kedua kalinya objek benar-benar sesuai dengan model koordinat objek akan dikirimkan ke Ground Control Station. Dari percobaan didapatkan persentase keberhasilan pendeteksian yang lebih baik karena LBP memiliki akurasi yang baik dan DPM mengurangi jumlah model yang digunakan untuk pencocokan.

Technology of drone has been developed and used, especially in the fields of monitoring for difficult area to reach by human, but the human detection methods are not implemented on drone yet. The most popular human detection methods are Histogram of Gradient HOG Feature Local Binary Pattern LBP with a success rate 80 , Deformable Part Model DPM with success rate 50 . This research reported a success rate of face detection method using LBP integrated with DPM that will implemented to determined the drone quadcopter movement. Objects caught on camera will be processed with LBP and DPM method, this method serve as feature extraction, where the image is processed to obtain the characteristic data from the extracted image shape. Data will be matched with models data face using classification, so that we will be obtained compatibility of object and models. If the object compatible with the models, a distance from the object to the drone will be sent to Single Board Computer SBC in the drone as a reference movement to approach the object with Robot Operating System ROS. The object will be checked for a second time to cross check the compatibility, then coordinates of the object will be sent to the Ground Control Station. The experimental will be obtained a better percentage of success rate detection because LBP has a good accuracy and DPM reduces the number of models for matching.

 File Digital: 1

Shelf
 S68874-Elnasari Ramadhan.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S68874
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : xiii, 110 pages : illustration ; 30 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S68874 14-19-639320607 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20456857
Cover