ABSTRAKPerusahaan e-marketplace perlu menjaga dan meningkatkan kualitas aplikasi mobile dan layanan melalui evaluasi berdasarkan opini pelanggan untuk mengembangkan perusahan dan memenangkan kompetisi antar perusahaan sejenis. Salah satu bentuk opini pelanggan terdapat di toko penyedia aplikasi, seperti Google Play Store dan App Store. Ulasan online ini dapat dimanfaatkan oleh perusahaan e-marketplace, yaitu dengan melakukan analisis opini pelanggan opinion mining terhadap aplikasi dan layanan e-marketplace berdasarkan aspek pendukungnya. Penelitian ini menggunakan ulasan berbahasa Inggris dan Indonesia yang ada pada Google Play Store dan App Store guna mengetahui penilaian pelanggan terhadap enam perusahan e-marketplace di Indonesia, yaitu BliBli, Bukalapak, Lazada, OLX, Shopee dan Tokopedia. Ulasan berbaasa Inggris diolah berdasarkan prinsip Recursive Neural Tensor Network RNTN dengan dua macam pengolahan yaitu dengan lemmatization dan tanpa lemmatization. Ulasan berbahasa Indonesia diolah berdasarkan dictionary-based approach dengan dua macam pengolahan yaitu dengan stemming dan tanpa stemming. Uji akurasi dari luaran opinion mining menunjukkan bahwa ulasan berbahasa Inggris lebih baik diolah dengan melakukan lemmatization, sedangkan ulasan berbahasa Indonesia lebih baik diolah tanpa melakukan stemming . Hasil penelitian dapat digunakan untuk meningkatkan kualitas aplikasi dan layanan tiap perusahaan e-marketplace kedepannya.
ABSTRACTE marketplace companies need to maintain and improve the quality of mobile application and services through an evaluation based on customer opinions to grow the company and win competition among similar companies. One form of customer opinion is found in app store stores, such as Google Play Store and App Store. This online review can be utilized by e marketplace company, by conducting customer rsquo s opinion analysis opinion mining of e marketplace application and services based on its supporting aspects. This study use English and Indonesian reviews available on Google Play Store and App Store platforms to determine customer ratings for six e marketplace companies in Indonesia, namely BliBli, Bukalapak, Lazada, OLX, Shopee and Tokopedia. English based reviews are processed based on the principle of Recursive Neural Tensor Network RNTN with two kinds of processing, with lemmatization and without lemmatization. Indonesian language reviews are processed based on dictionary based approach with two kinds of processing, with stemming and without stemming. The accuracy test from the results of the opinion mining shows that the English reviews are better processed with lemmatization, while Indonesian reviews are better processed without stemming. The results of the research can be used to improve applications and services quality of each e marketplace company in the future.