UI - Tugas Akhir :: Kembali

UI - Tugas Akhir :: Kembali

Evaluasi performa kredit menggunakan data mining untuk menilai permohonan kredit fasilitas layanan pembiayaan perumahan: Studi kasus PT. Bank XYZ = Credit performance evaluation using data mining to assess credit application fasilitas layanan pembiayaan perumahan: Case study PT. Bank XYZ

David Mario; Yova Ruldeviyani, supervisor; Mohamad Ivan Fanany, examiner; Denny, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2017)

 Abstrak

ABSTRAK
Kredit bermasalah atau non performing loan NPL merupakan salah satu indikator penilaian performa sebuah bank dalam menjalankan program kredit kepada nasabahnya. Peningkatan rasio NPL pada PT. Bank XYZ pada tahun 2016 memberikan dampak kerugian yang sangat besar bagi perusahaan. Tinggi atau rendahnya rasio NPL erat kaitannya dengan tingkat kepatuhan debitur dalam menyelesaikan kewajibannya sesuai dengan perjanjian yang ada. Peningkatan rasio NPL tersebut berasal dari berbagai sektor kredit termasuk kredit kepemilikan rumah KPR. Tercatat pada awal tahun 2017 terdapat 16,15 nasabah yang memiliki kredit tidak lancar pada kredit KPR FLPP. Kualitas kredit yang buruk memberikan kerugian pada Bank XYZ. Untuk mengatasi masalah tersebut, pada penelitian ini digunakan teknik data mining untuk melakukan penilaian risiko calon nasabah kredit. Teknik data mining decision tree, support vector machine dan na ve bayes digunakan untuk melakukan penilaian risiko kualitas kredit calon nasabah. Teknik ensemble classification adaptive boosting dan bagging juga digunakan untuk meningkatkan performa dari model klasifikasi dasar. Pemodelan dilakukan dengan menggunakan data nasabah KPR FLPP. Evaluasi penelitian dilakukan menggunakan teknik k-fold cross validation. Hasil dari penelitian menunjukkan model klasifikasi yang dihasilkan oleh metode base classification decision tree merupakan model yang terbaik pada kasus ini. Hasil dari pemodelan dapat digunakan dalam menilai potensi calon nasabah apakah akan menjadi nasabah yang mempunyai kualitas kredit baik atau buruk.
ABSTRACT
Non performing loan NPL is one of some indicators that can be used to measure the performance of bank in running a credit program to its customer. Bank XYZ rsquo s NPL rate increased in 2016 brought a huge loss to the organization. High or low NPL rate in the bank is closely related to the level of compliance of its customer in fulfilling their obligation based on agreement. The increment of NPL came from several sectors including the mortgage sector. In the beginning of 2017, there are 16.15 of customer have bad credit performance of FLPP mortgage program. Bad quality can bring loss to the Bank XYZ. To resolve that problem, data mining technique is used in order to assess the credit risk of prospect customer. Data mining techniques such decision tree, support vector machine SVM and na ve bayes are used to score the credit risk of the prospect customer. Ensemble classification technique such adaptive boosting and bagging are used as well to improve the performance of base classification rsquo s model. Modelling uses the historical customer data of FLPP mortgage program. The technique of evaluation in this research uses k fold cross validation. The result of this research shows classifiers from base classification decision tree has the best result amongst the other models in this case. The best models can be used to score the potential of prospect customer whether they will be having good credit or bad credit.

 File Digital: 1

Shelf
 TA-David Mario.pdf :: Unduh

 Metadata

Jenis Koleksi: UI - Tugas Akhir
No. Panggil : TA-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2017
Program Studi :
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 160 pages; illustration + appendix
Catatan Bibliografi : pages 63-65
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
No. Panggil No. Barkod Ketersediaan
TA-Pdf 16-18-655641356 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20468228