ABSTRACTVisualisasi pertulangan daun telah banyak dilakukan menggunakan citra RGB dan metode pengolahan yang digunakan adalah pemrosesan morfologi. Hasil dari metode tersebut dapat menampilkan pola pertulangan daun atau venasi dengan baik, namun sangat terbatas pada resolusi kamera yang digunakan serta keterbatasan informasi spektral citra daunyan dihasilkan. Pada penelitian kali visualisasi venasi berhasil dilakukan dengan citra hyperspectral dengan panjang gelombang 400-1000nm. Sistem visualisasi pada penelitian kali ini menerima input citra hyperspectral dan menghasilkan output berupa citra venasi. Proses automasi mendapatkan citra venasi menggunakan model klasifikasi. Model klasifikasi dibuat berdasarkan infomasi panjang gelombang dari vena dan bagian helaian daun. Tujuan model klasifikasi ini adalah memprediksi bagian vena pada citra hyperspectral Algoritma klasifikasi yang digunakan pada penelitian ini adalah Support Vector Machine SVM , Multi Layer Perceptron Classifier MLPC , serta Decision Tree DT . Hasil akurasi dari model mencapai 97 pada model SVM, 95 pada model MLPC, dan 81 pada model DT. Model SVM dan MLPC selanjutnya digunakan untuk memprediksi citra hyperspectral untuk menghasilkan citra venasi daun bayam merah. Hasil akhir, berupa citra venasi menggunakan model SVM lebih baik karena mampu memvisualisasikan bagian vena primer dan vena sekunder dibandingkan citra venasi dengan model MLPC.
ABSTRACTVenation visualization broadly have been done by RGB images using morphological image processing. The result of that method can visualizing leaf venation properly, but it depends on camera resolution and limited spectral information. In this research, we developing venation visualization system using hyperspectral image on band 400 1000nm. Our system visualizing red amaranth leaf venation as a output and hyperspectral image for input. To automated identifying venation region, we built classification model to predict based on spectral information. Classification model take every hyperspectral image pixel to predict leaf vein. In this work, we made 3 classification model namely SVM Support Vector Machine , MLPC Multi Layer Perceptron Classifier , and DT Decision Tree . Our model trained by 5 fold cross validation. Average accuracy score for SVM model up to 97 , 95 for MLPC and 81 on DT. Regard this accuracy result, SVM and MLPC model used for constructed venation image and DT model fall on overfitting state. The final result, SVM perform better than MLPC by visualizing primary vein and secondary vein.