UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Penaksiran parameter distribusi rayleigh pada data survival tersensor kanan tipe II dengan metode bayes = Parameter estimation of rayleigh distribution for right censored survival data type II with bayes method

Rahajeng Ika Desyana Putri; Ida Fithriani, supervisor; Siti Nurrohmah, supervisor; Titin Siswantining, examiner; Mila Novita, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018)

 Abstrak

Analisis survival membutuhkan data survival yang terdiri dari waktu survival sekumpulan objek. Data survival dapat berbentuk data lengkap maupun tersensor. Namun data survival biasanya merupakan data tersensor. Salah satu data tersensor yang sering digunakan adalah data tersensor kanan tipe II yaitu merupakan data waktu kejadian dimana pengamatan dihentikan setelah diperoleh r objek pertama yang mengalami kejadian dari n objek yang diuji. Dilakukan pengamatan data survival tersensor kanan tipe II diperoleh grafik fungsi survival, fungsi survival serta fungsi kepadatan probabilitas yang merepresentasikan data tersebut. Fungsi kepadatan probabilitas data tersebut merupakan fungsi dari sebuah variabel random berdistribusi Rayleigh. Karena parameter tidak diketahui selanjutnya dilakukan penaksiran parameter.
Dalam skripsi ini dicari penaksir parameter distribusi Rayleigh pada data survival tersensor kanan tipe II dengan metode Bayes menggunakan dua fungsi loss yaitu Square Error Loss Function SELF dan Precautionary Loss Function PLF. Selanjutnya dilihat sifat bias dari penaksir parameter tersebut. Kemudian membandingkan hasil taksiran parameter dari kedua fungsi loss berdasarkan Mean Square Error MSE yang dihasilkan melalui simulasi data. Misalkan adalah parameter yang akan ditaksir, untuk diperoleh PLF memberikan hasil taksiran yang baik dan untuk diperoleh SELF memberikan hasil taksiran yang baik. Taksiran dikatakan baik apabila nilai MSE yang dihasilkan semakin kecil.

The survival analysis requires survival data consisting of survival time of a set of objects. Survival data can be either complete or censored data. However, survival data is usually censored data. One of the censored data that is then used is the right type censored data type II that is the time data of the events used to find the objects that exist. Recurrence of right type categorized survival data is obtained by graph of survival function, survival function and probability function which represents the data. The probability data relation function is a randomly distributed Rayleigh variable. Because the parameter is unknown, parameter estimation is performed.
In this thesis is searched the estimator of Rayleigh distribution parameter on the right type categorized survival data type II with Bayes method using two loss function that is Square Error Loss Function SELF and Precautionary Loss Function PLF. A bias viewpoint of the estimator 39s parameter. Then compare the parameter estimation results of the second function based on Mean Square Error MSE generated through data simulation. Let be the parameter to be estimated, for le 1 obtaining the PLF gives good estimates and for 1 the SELF result gives a good estimation result. The estimate that the resulting MSE values is getting smaller.

 File Digital: 1

Shelf
 S-Pdf-Rahajeng Ika Desyana Putri.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer recource (rdacarier)
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 115 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-21-162098758 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20474708
Cover