Melimpahnya gas CO2 di alam berpotensi untuk digunakan sebagai bahan baku konversi recovery untuk menghasilkan produk bahan kimia sintetik salah satunya melalui reduksi CO2 secara elektrokimia elektroreduksi. Elektroda boron-doped diamond BDD diketahui memiliki berbagai karakteristik unggul untuk digunakan sebagai elektroda kerja pada aplikasi elektroreduksi. Pada penelitian ini akan dilakukan modifikasi elektroda BDD dengan mendepositkan bimetal platinum dan iridium Pt-Ir menggunakan metode wet chemical seeding yang dilanjutkan dengan elektrodeposisi pada potensial -0,5 V vs Ag/AgCl selama 15 menit. Optimalisasi dilakukan pada variasi rasio Pt-Ir 1:1, 1:2 dan 2:1. Setiap elektroda dikarakterisasi menggunakan CV, SEM, EDX, XPS dan Raman Spektroskopi. Elektroreduksi CO2 dilakukan pada sel 2 kompartemen, yaitu ruang katoda yang berisi NaCl 0,1 M dan terta terlarut gas CO2 dan ruang anoda yang berisi Na2SO4 dengan menggunakan setiap elektroda tersebut masing-masing pada potensial -1,1 V, -1,2 V, -1,3 V, -1,5 V, dan -1,7 V vs Ag/AgCl selama 60 menit. Produk hasil reduksi dianalisa menggunakan HPLC dan GC. Produk terbanyak yang dihasilkan adalah asam format sebesar 7,08 mg/L dengan efisiensi faraday 23,17 menggunakan elektroda PtIr 2:1 BDD pada potensial -1,1 V vs Ag/AgCl. Selain asam format dihasilkan pula produk lainnya seperti metanol, gas CO, gas metana dan gas H2. Sedangkan dengan menggunakan elektroda Pt-BDD hanya mampu menghasilkan asam format 2,51 mg/L pada potensial -1,6 V vs Ag/AgCl. Keberadaan Ir mampu menurunkan potensial pada elektroreduksi CO2 untuk menghasilkan produk dengan konsentrasi yang lebih besar.
The abundance of CO2 gas in nature potentially to produce valueable chemical products through electrochemical reduction of CO2 electroreduction of CO2. Boron doped diamond BDD is known to have superior characteristic to supports to electroreduction CO2 which requires high potensial reduction. In this research, BDD electrode was modified by depositing platinum iridium bimetals onto BDD surface through wet chemical seeding method followed by electrodeposition at 0,5 V vs Ag AgCl for 15 min. Optimization was also performed for various Pt Ir mole ratios, including 1 1 , 1 2 and 2 1. Each electrode was characterized by using CV, SEM, EDX, XPS and Raman spectroscopy. Electroreduction of CO2 was performed by using two compartement cell. In the cathode chamber 0.1 M NaCl with dissolved CO2 gas was placed, while in the anode chamber the solution was 0.1 M Na2SO4. PtIr BDD were performed as working electrode. Electroreduction of CO2 was carried out at various potentials of 1,1 V, 1,2 V, 1,3 V, 1,5 V, and 1,7 V vs Ag AgCl for 60 min. The products of the electroreduction were analyzed using HPLC and GC. The main product in this system was formic acid with the largest concentration of 7,08 mg L with 23,17 farradaic efficiency at PtIr 2 1 BDD at the potential of 1,1 V vs Ag AgCl. Other products including methanol, CO, methane and H2 gas was also generated. On the other hand, Pt BDD electrode can produce 2,51 mg L formic acid at much higher potential at 1,6 V vs Ag AgCl. The existance of Ir particles proposed to contribute in reducing the required potential and to produce concentration of formic acid the CO2 reduction.