UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Konstruksi pelabelan graceful pada graf pohon berakar menggunakan matriks ketetanggaan = Construction of graceful rooted tree using the adjacency matrix

Ikhlas Pratama Sandy; Kiki Ariyanti Sugeng, supervisor; Alhadi Bustaman, examiner; Hengki Tasman, examiner; Silaban, Denny Riama, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018)

 Abstrak

Pelabelan graf, atau juga dikenal sebagai valuation graf, adalah pemetaan dari elemen graf ke himpunan bilangan yang disebut sebagai label, yang memenuhi beberapa ketentuan sesuai dengan jenis pelabelannya. Pemetaan ?? disebut sebagai pelabelan graceful dari graf dengan busur sebanyak "jika" adalah suatu fungsi injektif dari himpunan simpul di ke himpunan 0,1, hellip;, "sedemikian sehingga ketika masing-masing busur" diberi label "minus", label yang dihasilkan untuk semua busur adalah berbeda. Tidak banyak teknik umum yang diketahui untuk menghasilkan pelabelan graceful. Secara khusus, konjektur Ringel-Kotzig yang menyatakan bahwa semua graf pohon adalah graceful masih terbuka sampai saat ini. Pada dasarnya, semua graf pohon dapat direpresentasikan sebagai suatu graf pohon berakar, yaitu graf pohon dengan sebuah simpul yang dibedakan dan disebut sebagai simpul akar. Di dalam tesis ini dibahas tentang konstruksi pelabelan graceful pada graf pohon berakar khusus menggunakan matriks ketetanggaan.

A graph labeling, also known as a valuation of a graph, is a mapping which carries graph elements onto numbers called labels that meet some properties depending on the type of labeling that is being considered. A function is called a graceful labeling of a graph with edges if is an injection from the vertices of to the set 0,1, hellip, such that, when each edge is assigned the label minus, the resulting edge labels are distinct. Not many general techniques are known in order to generate graceful labeling of graphs. In particular the famous Ringel ndash Kotzig conjecture which states that all trees are graceful remains open until present. Every tree can be represented as a rooted tree with a distinguished vertex called the root. In this thesis we discuss on construction of specific graceful rooted tree using the adjacency matrix.

 File Digital: 1

Shelf
 T50045-Ikhlas Pratama Sandy.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T50045
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated ; computer
Tipe Carrier : volume ; online resource
Deskripsi Fisik : ix, 37 pages : illustration ; 30 cm
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T50045 15-18-729716118 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20476946
Cover