Seringkali analisis statistik beranggapan suatu data hanya berasal dari satu populasi saja. Padahal pada kenyataannya terdapat kondisi dimana suatu data bisa dibagi menjadi beberapa sub-populasi. Gaussian Finite Mixture Model adalah salah satu metode untuk memodelkan data heterogen yang memungkinkan berasal dari sub-populasi yang berbeda. Model ini berbentuk superposisi dari beberapa distribusi Gaussian. Jumlah distribusi akan ditentukan dengan menggunakan Akaikes Information Criterion dan model diagnostik. Estimasi parameter pada model ini menggunakan metode Bayesian, yaitu dengan menentukan distribusi prior untuk parameter model, digabungkan dengan likelihood yang akan menghasilkan distribusi posterior. Kemudian, Markov chain Monte Carlo-Gibbs Sampler digunakan untuk menarik sampel pada parameter dari distribusi poteriornya masing-masing.
Commonly statistical analysis assume data comes from one population. But there are conditions where data might be generated from several sub-populations. Gaussian Finite Mixture Model (GFMM) is one of the methods to model heterogeneous data that might come from different sub-populations. This model was formed as a superposition of several Gaussian distribution, with different location parameter. Number of distributions will be determined using Akaike`s Information Criterion and model diagnostic. Parameter estimation is conducted using Bayesian method, that is by specifying the prior distribution for the models parameters, combined with the likelihood to produce the posterior distribution. Finnally, Markov chain Monte Carlo-Gibbs Sampler is implemented to withdraw sampel of parameters from the corresponding posterior distributions.