UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Penaksiran parameter distribusi burr pada data tersensor kanan dengan metode bayes = Parameter estimation of burr distribution for right censored data with bayes method

Lukas Hansel Briliano; Sarini Abdullah, supervisor; Ida Fithriani, supervisor; Yekti Widyaningsih, examiner; Mila Novita, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019)

 Abstrak

Distribusi Burr Tipe XII atau yang biasa dikenal dengan distribusi Burr merupakan salah satu dari dua belas tipe distribusi kontinu dalam sistem Burr. Distribusi Burr mempunyai karakteristik menceng kanan dan mempunyai tail yang tebal. Distribusi Burr dapat diterapkan dalam berbagai masalah survival. Untuk mempelajari lebih lanjut, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi Burr pada data tersensor kanan dengan metode Bayes. Prosedur penaksiran adalah dengan menentukan distribusi prior yang digunakan, yaitu conjugate prior, pembentukan fungsi likelihood untuk data tersensor kanan dan pembentukan distribusi posterior. Penaksir Bayes didapatkan dengan cara meminimumkan fungsi risiko posterior berdasarkan fungsi loss. Fungsi loss yang digunakan adalah Square Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Setelah didapatkan penaksir Bayes, dilakukan simulasi data untuk membandingkan keefektifan taksiran parameter dari kedua fungsi loss menurut Mean Square Error (MSE). Yang dimaksud penaksir yang efektif adalah penaksir yang mempunyai MSE lebih kecil. Selain itu dilihat juga pengaruh intensitas tersensor pada kedua fungsi loss menurut MSE. Berdasarkan hasil simulasi, penaksir Bayes dengan PLF lebih efektif daripada SELF dan semakin besar intensitas tersensor maka MSE yang dihasilkan semakin besar untuk kedua fungsi loss.

Burr Type XII distribution is known as Burr distribution, is one of the twelve types continous distribution on Burr system. Burr distribution is heavy-tailed and right-skewed. Burr distribution has an important role in survival analysis. To learn more, parameter estimation is needed. This study will explain about parameter estimation of Burr distribution for right censored data with Bayes method. Procedure for estimating parameter are, determine which prior distribution to use, that is conjugate prior, likelihood function construction for right censored data and calculation of posterior distribution. Bayes estimator is obtained by minimize posterior risk function based on loss function. This study will use Square Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation will be done to compare the effectiveness of Bayes estimator with both loss function according to Mean Square Error (MSE). What is meant by effective estimator is it has smaller MSE. Besides, this study is also explained the effect of the censored intensity according to MSE. Based on simulation results, Bayes estimator with PLF is more effective than SELF and greater censored intensity, greater MSE produced, for both loss function.

 File Digital: 1

Shelf
 S-Pdf-Lukas Hansel Briliano.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : unmediated
Tipe Carrier : online resource
Deskripsi Fisik : xxi, 80 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-20-961755403 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20485090
Cover