ABSTRACTSkripsi ini membahas model regresi untuk mengestimasi net premium sebuah polis asuransi umum yang dijual dengan deductible. Pada asuransi umum, taksiran untuk net premium harus mempertimbangkan frekuensi dan severitas klaim yang kemungkinan akan diajukan di masa depan. Model untuk net premium dapat dituliskan ke dalam dua komponen, yaitu komponen frekuensi dan severitas. Frekuensi dan severitas klaim antar pembeli polis dapat berbeda karena tidak semua pembeli polis memiliki karakteristik yang sama. Untuk menetapkan harga premi yang adil, karakteristik tersebut harus dipertimbangkan. Maka akan digunakan pendekatan analisis regresi. Model regresi dengan karakteristik pembeli polis sebagai kovariat diterapkan pada model frekuensi dan severitas secara terpisah, dan diasumsikan efek kovariat tersebut multiplikatif. Akan tetapi, dapat ditunjukkan bahwa efek dari deductible pada frekuensi maupun severitas tidak multiplikatif. Oleh karena itu, data akan dipartisi berdasarkan besarnya deductible dan untuk tiap partisi data ini dilakukan analisis Generalized Linear Model (GLM). Dari hasil GLM tersebut, dilakukan regresi sekali lagi untuk mencari hubungan antara frekuensi dengan deductible. Demikian juga untuk severitas dengan deductible. Hasil regresi yang diperoleh digunakan untuk mengestimasi frekuensi dan severitas klaim berdasarkan nilai deductible tertentu untuk setiap kombinasi karakteristik pembeli polis. Pada akhirnya, estimasi net premium didapat dari perkalian estimasi frekuensi dan severitas klaim.
ABSTRACTThis thesis discusses regression models to estimate the net premium of a generalĀ insurance policy sold with a deductible. In general insurance, when estimating the net premium, the possible frequency and severities of claims made in the future must be considered. The model for net premium can be written into two components: the frequency and the severity component. Since every policyholder can have different characteristics, the claim frequency and severity can be different. To determine fair policy prices, these characteristics must be considered. Hence, the regression model will be used. The regression model with the policyholders characteristics as covariates is used to model the frequency and severity separately, and it is assumed that the effect of each covariate is multiplicative. However, it can be shown that the effect of deductible is not multiplicative. Therefore, the data will be partitioned based on deductibles and Generalized Linear Model (GLM) analysis will be used on each data partition. From this result, another regression will be used to model the relationship between frequency and deductible, and the relationship between severity and deductible. The estimate for net premium is obtained as a multiplication of the claim frequency and severity.