UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Aplikasi support vector regression dengan seleksi fitur menggunakan particle swarm optimization untuk prediksi harga saham di Indonesia = Application of support vector regression in Indonesian stock price prediction with feature selection using particle swarm optimization

Puteri Kintandani; Zuherman Rustam, supervisor; Gatot Fatwanto Hertono, examiner; Gianinna Ardaneswari, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019)

 Abstrak

Investasi saham merupakan salah satu jenis investasi yang paling populer karena saham memberikan tingkat keuntungan yang tinggi dibandingkan dengan jenis investasi lainnya, tetapi saham juga memiliki tingkat risiko yang tinggi. Fluktuasi harga saham memberikan peluang bagi investor untuk mendapatkan keuntungan yang tinggi. Dibutuhkan sebuah model prediksi harga saham untuk melihat pergerakan harga saham di masa yang akan datang, sehingga investor dapat menentukan waktu yang tepat untuk membeli, menahan, dan menjual saham mereka. Dengan demikian, mereka terlepas dari risiko kerugian dan memperoleh keuntungan yang besar. Terdapat beberapa studi yang membahas tentang prediksi harga saham menggunakan machine learning. Salah satunya yaitu menggunakan Support Vector Regression (SVR). Oleh karena itu, pada skripsi ini akan diuji penerapan SVR menggunakan Particle Swarm Optimization (PSO) sebagai seleksi fitur dalam memprediksi harga saham di Indonesia. Pada skripsi ini digunakan data historis saham harian dari Jakarta Stock Index dan beberapa saham pada sektor real estate dan properti. Beberapa indikator teknikal digunakan sebagai fitur dalam memprediksi harga saham. Studi ini menunjukkan bahwa prediksi harga saham menggunakan SVR dengan PSO sebagai seleksi fitur memiliki kinerja yang baik untuk semua data, fitur, dan jumlah data training yang digunakan pada skripsi ini memiliki nilai error yang kecil. Oleh karena itu, diperoleh model yang akurat untuk memprediksi harga saham di Indonesia.

Stock investing is one of the most popular types of investments since it provides the highest return among all investment types, although it is associated with considerable risk. Fluctuating stock prices provide an opportunity for investors to make a high profit. A stock price prediction model is needed to see future stock price movements, so investors can decide the right time to buy, hold, and sell their stocks which regardless of the risk of loss and gain a big profit. Several studies have focused on the prediction of stock prices using machine learning. One of them is Support Vector Regression (SVR). Therefore, this study examines the application of SVR using Particle Swarm Optimization (PSO) as feature selection in predicting Indonesian stock price. This thesis used historical daily stock data from Jakarta Stock Index (JKSE) and several real estates and property stock sectors. Some technical indicators are used as a feature in predicting stock price. The study found that stock price prediction using SVR with PSO as feature selection showed good performances for all data, features and the amount of training data used by the study have relatively low error probabilities. Therefore, an accurate model is obtained to predict stock price in Indonesia.

 File Digital: 1

Shelf
 S-Puteri Kintandani.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xvi, 63 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-19-348338418 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20485875
Cover